Kömür Damarlarının Gaz Ġçeriğinin Belirlenmesi; Örnek Bir Uygulama

Artan üretim miktarları ile üretim panolarının daha derinlere ulaĢması, çalıĢılan ayağın önündeki kömür damarlarının gaz içeriğinin belirlenmesine yönelik talebi de beraberinde getirmiĢtir. Aynı zamanda kömür damarlarının gaz içeriğini etkileyen parametrelerin birbirleriyle olan iliĢkilerinin biliniyor olması, doğru bir tahmin için son derece önemlidir. Elde edilen verilerin değerlendirilmesi, özellikle iĢçi sağlığı ve iĢ güvenliği açısından ve verimli bir iĢyeri planı ortaya koyulması yönünden ayrı bir hassasiyete sahiptir. Bu çalıĢmada, kömürlerin gaz içeriğinin tespitine yönelik yapılan çalıĢmalar ile birlikte, Gedizde (Kütahya) bir kömür ocağından elde edilen numunelerin gaz potansiyeli araĢtırılmıĢ yapılan deneysel çalıĢmalar detayları ile birlikte verilmiĢtir.

The Determination of Gas Content of Coal; A Case Study

Increased production rates and deeper panel locations have brought about the demand for the determination of the gas content of coal beds ahead of the working face. It is also important to know the association of the parameters with each other for an accurate estimation of gas content of the coal seams. Evaluation of the data obtained has a distinct precision specifically for the occupational health and safety as well as realizing an efficient workplace. In the present work, the practices towards the determination of gas content of the coal are outlined together with the explanation of an experimental work carried out on the coal samples taken from a colliery in the province of Gediz (Kütahya).

___

  • 1. Gray, L., 1987. Reservoir Engineering in Coal Seams: Part 1- The Physical Process of Gas Storage and Movement in Coal Seams, SPE Reservoir Engineering, 28-34.
  • 2. Creedy, D.P., 1991. An Introduction to Geological Aspects of Methane Occurrence and Control in British Deep Coal Mines, Q Jour. Eng. Geol. Hydrogeol., 24: 209-220.
  • 3. Noack, K., 1998. Control of Gas Emissions in Underground Coal Mines, Int. Jour. of Coal Geology, 35: 57-82.
  • 4. Beamish, B.B., Crosdale, P.J., 1998. Instantaneous Outburst in Underground Coal Mines: An Overwiev and Association with Coal Type, Int. Jour. of Coal Geology, 35: 27-55.
  • 5. Cao, Y., He, D., Glick, D.C., 2001. Coal and Gas Outburst in Footwalls of Reverse Faults, Int. Jour. of Coal Geology, 48: 47-63.
  • 6. Wang, S., Elsworth, D., Liu, 2012. J., Mechanical Behaviour of Methane Infiltrated Coal: The Roles of Gas Desorption, Stress Level and Loading Rate, Rock Mech. Rock Eng. DOI: 10.1007/s00603-012-0324-0.
  • 7. Curl, S.J., 1978. Methane Prediction in Coal Mines, IEA Coal research, London, Report Number ICTIS/TR04.
  • 8. Osisanya, S.A., Schaffitzel, R.F., 1996. A Review of Horizontal Drilling and Completion Techniques for Recovery of Coalbed Methane, SPE Int. Conf. on Horizontal Well Technology, Society of Petroleum Engineers, Canada, November, 13p.
  • 9. Mastalerz, M., Gluskoter, H., Rupp, J., 2004. Carbon Dioxide and Methane Sorption in High Volatile Bituminuous Coals from Indiana, International Journal of Coal Gelogy, Vol. 60, Issue 1, pp43-55.
  • 10. Saghafi, A., 2010. Noval Methods of Coal Saem Gas Content Determination for Estimation of Greenhouse Gas Emissions from Mining”, Proceedings of the 27th Annual International Pittsburgh Coal Conference, Istanbul, Turkey.
  • 11. Gregg, S.J., Sing, K.S.W., 1982. Adsorption, Surface Area and Porosity, 2. Auflage, Vol. 86, London: Wiley-VCH Verlag GmbH&Co. KGaA.
  • 12. Marsh, H., 1987. Adsorption Methods to Study Microporosity in Coals and Carbons-A Critique, carbon, Vol. 25, No. 1, pp 49-58.
  • 13. Lowell, S., Shields, J.E., 1991. Powder Surface Area and Porosity, Vol. 2, Springer.
  • 14. Levy, J.H., Day, S.J., Killingley, J.S., 1997. Methane Capacities of Bowen Basin Coals Related to Coal Properties, Fuel, Vol. 76, No. 9, pp 813-819.
  • 15. Crosdale, p.J., Beamish, B., Valiz, M., 1998. Coalbed Methane Sorption Related to Coal Composition, International Journal of Coal Gelogy, Vol. 35, No. 1, pp 147-158.
  • 16. Clarkson, C. and Bustin, R., 1999. The Effect of Pore Structure and Gas Pressure upon the Transport Properties of Coal: A Laboratory and Modeling Study, 1. Isotherms and Pore VolumeDistributions, Fuel, Vol. 78, No. 11, pp 37-55.
  • 17. Sobolik, J.L., Ludlow, D.K., 1992. Parametric Sensivity Comparison of the BET and Dubinin- Radushkevich Models for Determining Char Suurface Area by CO2 Adsorption, Fuel, Vol. 71, No. 10, pp 1195-1202.
  • 18. Lamberson, M.N., Bustin, R.M., 1993. Coalbed Methane Characteristics of Gates Formation Coals, Northeastern British Columbia: Effect of Maceral Composition. AAPGF bulltin, Vol. 77, No.12, pp 2062-2076.
  • 19. Levine, J.R., 1993. Coalification: the Evaluation of Coal as Source Rock and Reservoir Rock for Oil and Gas, Hydrocarbons from Coal Oklahoma American Association of Petroleum Geolists.
  • 20. Scott, A., 2002. Hydrogeologic Factors Affecting Gas Content Distribution in Coal Beds, Int. Jour. of Coal Geology, 50, 363-387.
  • 21. Scott, A.R., Kaiser, W.R., 1996. Factors Affecting Gas-Content Distribution in Coal Beds: A Review”, Expanded Abstracts, Rocky Mountain Section Meeting: American Association of Petroleum Geologists, 101-106.
  • 22. Karayigit, A.I., Spears, D.A., Booth, C.A., 2000. Antimony and Arsenic Anomalies in the Coal Seams from the Gokler Coal Field, Gediz, Turkey, Int. Journal of Coal Geology, 44: 1-17.
  • 23. MTA, 2002. Türkiye Tersiyer Kömürlerinin Kimyasal ve Teknolojik Özellikleri, Ankara, s 227.
  • 24. Demir, U., 2011. Kütahya Gediz Yöresi Kömürlerindeki Kükürdün UzaklaĢtırılması, DPÜ, Fen Bilimleri Enstitüsü, Doktora Tezi, Kütahya, s 205.
  • 25. MTA, 2010. Türkiye Linyit Envanteri, Ankara, s 234.
  • 26. Battino, S., Doyle, J., 1983. The Determination of Gas Content of Coal from Boreholes, Ventilation of Coal Mines Symposium, Australian Ins. Of Min. And Met. Engineers, pp 6-1/6-5.
  • 27. Nazarova, L.A., Nazarov, L.A., Polevshchika, Ya, Rodin, R.I., 2012. Inverse Problem Solution for Estimating Gas Content and Gas Diffusion Coefficient of Coal, Journal of Mining Science: 48(5), 781-788.