Design and Analysis of Electrically Operated Golf Cart Chassis Using FEA

Günümüz otomotiv endüstrisinde yüksek performans, uzun ömür ve minimum yakıt tüketim şartlarını sağlayacak düşük ağırlıklı parçalara yönelik artan bir talep bulunmaktadır. Bu talebi gerçekçi maliyetle ve güncel güvenlik gereksinimlerine uyarak karşılamak önemli bir sorun teşkil etmektedir. Bu çalışmanın amacı; Çukurova Üniversitesi kampusu içerisinde kullanılacak elektrikli golf aracı şasesinin tasarımını ve analizlerini yapmaktır. Şasi, tıpkı bir iskelet gibi üzerine motor, tekerlek, fren, direksiyon, aks gibi çeşitli parçaların monte edildiği bir yapıdır. Araca çeşitli şartlar altında mukavemet ve denge sağlar. Şasinin ana işlevi sadece üzerindeki parçaları ve motor, karoser, yolcular, bagaj gibi yükleri taşımak değil, ayrıca süspansiyon ve direksiyon mekanizmalarının bağlantı noktaları arasındaki istenen etkileşimi

Sonlu Eleman Analizi Kullanarak Elektrikli Golf Aracı Şasesi Tasarım ve Analizi

The significant challenge in today’s automotive industry is to defeat the increasing demands for higher performance, longer life, and lower weight of components in order to satisfy fuel economy requirements at a realistic cost using safety requirements. The aim of this study is to design and analyze the chassis of an electrically operated golf cart for use in Çukurova University campus. Chassis is a frame just like skeleton on which various machine parts like engine, tires, axle assemblies, brakes, steering etc. are joined. It gives strength and stability to the vehicle under different conditions. The main function of the chassis is not only to support the components and payload mounted upon it including engine, body, passengers and luggage, but also to maintain the desired relationship between the suspension and steering mechanism mounting points. In this study; 3D models of chassis were designed using SolidWorks by considering different types of profiles. Structural analyses were conducted on the golf cart chassis with various materials and profiles via ANSYS software using Finite Elements Analysis (FEA) method. The aim of the design was to achieve sufficient strength and minimum deflection values with optimum weight, cost and ease of manufacturing.

Kaynakça

1. Chrysler, L., 2007. RAM 2500 Hydro-formed ladder frame, ww.dodge.com/en/2007/ram_2500/ 13.01.2015.

2. Rastkar, A. R., Bell, T., 2002. Tribological Performance of Plasma Nitride Gamma Based Titanium Aluminates; Wear, 253, p: 1121-1131.

3. Lovatt, C.R., 2008. The Development of a Lightweight Electric Vehicle Chassis and Investigation into the Suitability of TiAl for Automotive Applications’; Ms. Degree, Mechanical Engineering; The University of Waikato at Hamilton, New Zealand.

4. Jaguar, U.S.A. 2007. Jaguar XJ Introduction- Aluminum Construction; http://www.jaguarusa.com/; 13.01.2015.

5. Demeng, Z.H.Q. 2005. Research on Lightweight Design of Automobile Structure Based on ANSYS; Transactions of the Chinese Society of Agricultural Machinery, 2005-06, p: 12-15;

6. Bircan, D.A., Yaşar, A., Koca, E., 2014. Design and Analysis of Chassis using Finite Element Analysis, AVTECH’14: II. International Automotive & Vehicle Technologies Conference; İstanbul, Türkiye.

7. Agrawal M.S., Razik M.D., 2013. Finite Element Analysis of Truck Chassis, International Journal of Engineering Sciences & Research Technology, Vol. 2(12), p: 76 85.

8. Sitaramanjaneyulu, K., Raju, V.K., 2014. Modeling and Analysis of Heavy Truck at Variable Loads; International Journal of Technology and Engineering Science, Volume 2(1), p: 1417-1424.

9. Hirsch, J., 2011. Aluminum in Innovative Light-Weight Car Design, Materials Transactions, Vol. 52(5), p: 818-824.

10. Teh, R.Y., Tong D.K.T. 2013. A Structural Investigation of an Electric Car Chassis, EURECA 2013 Conference; Taylor’s University, Malaysia.

11. Riley W.B., George A.R., 2002. Design, Analysis and Testing of a Formula SAE Car Chassis; SAE Motorsports Engineering Conference and Exhibition; Indianapolis, Indiana.

Kaynak Göster