Sisplatin ve insan mezenkimal kök hücrelerden izole edilen mitokondri naklinin DU-145 hücre proliferasyonuna etkisi

Amaç: Bu çalışmada antineoplastik bir ilaç olan sisplatin ve insan mezenkimal kök hücrelerinden (İMKH) izole edilen mitokondriler, insan prostat kanser hücrelerine (DU-145) uygulanarak, proliferasyon ve sitotoksisitenin değerlendirilmesi hedeflenmiştir. Gereç ve Yöntem: Çalışmamızda, İMKH ve DU-145 hücre hatları kullanıldı. İMKH’ ler ~20x106 hücre olacak şekilde çoğaltılarak kitte belirtilen protokollere göre mitokondriler izole edildi. İzole mitokondrilerin protein miktarı, bikinkoninik asit yöntemiyle (BCA) ölçüldü. DU-145 hücreleri, her kuyuda 10x103 hücre olacak şekilde 96’ lık plate’e ekildi. Sisplatin’ in 6 µM ve 14 µM dozları 24 saat uygulandı. İnkübasyon sonunda hücre medyumları değiştirildi ve izole mitokondriler (10x, 100x) eklenerek tekrar 24 saat inkübe edildi. Hücre çoğalması ve canlılığı tetrazolyum tuzu (MTT) yöntemiyle, 570nm-630nm absorbans değerleri plate okuyucu da ölçülerek farkları alındı ve hücre çoğalma yüzdeleri hesaplandı. Bulgular: DU-145 hücrelerine 6 µM sisplatin uygulaması kontrol grubuna göre proliferasyonu %35 oranında azaltırken, 14 µM sisplatin ise hücre proliferasyonunu %68 azalttı. Cis-6 µM grubuyla karşılaştırıldığında, Cis-6 µM+Mito-10x grubunda proliferasyonda anlamlı fark görülmezken, Cis-6 µM+Mito-100x grubunda anlamlı azalma görüldü. Sonuç: Prostat kanseri hücrelerine sisplatin ile birlikte mitokondri transplantasyonu yapıldığında proliferasyonu daha da azalmaktadır. Ayrıca, mitokondri transplantasyonunun intrasellüler çeşitli proliferatif, apopitotik sinyal yolaklarını etkileyerek ve mikroçevreyi düzenleyerek kanserli hücrelerin çoğalmasını azaltabilir.
Anahtar Kelimeler:

kök hücre, kültür, mitokondri

Effect of cisplatin and mitochondria transplantation isolated from human mesenchymal stem cells on DU-145 cell proliferation

Purpose: The aim of this study is to evaluate proliferation and cytotoxicity by applying the antineoplastic drug cisplatin and mitochondria isolated from human mesenchymal stem cells (IMSCs) to human prostate cancer cells (DU-145). Materials and Methods: IMSCs and DU-145 cell line were used in our study. IMSCs were multiplied to ~20x106 cells and mitochondria were isolated according to the protocols in kit. Protein content of the isolated mitochondria was measured by bicinchoninic acid method (BCA). DU-145 cells were seeded into 96-well plates at 10x103 cells in per well. Cisplatin 6 µM and 14 µM doses were administered for 24 hours. Isolated mitochondria (10x, 100x) were incubated for 24 hours again. Cell proliferation and viability were measured using the tetrazolium salt (MTT) method, and the absorbance values of 570 nm-630 nm were measured in a plate reader, and the cell proliferation percentages were calculated. Results: 6 µM cisplatin application to DU-145 cells proliferation decreased by 35% compared to the control group, while 14 µM cisplatin reduced it by 68%. When compared with the Cis-6 µM group, there was no significant difference in proliferation in the Cis-6 µM+Mito-10x group while a significant decrease was observed in the Cis-6 µM+Mito-100x group. Conclusion: When mitochondria are transplanted together with cisplatin to prostate cancer cells, proliferation is further reduced. In addition, mitochondria transplantation may reduce the proliferation of cancerous cells by affecting various intracellular proliferative, apoptotic signaling pathways and by regulating the microenvironment.

___

  • 1. Kheirandish-Rostami M, Roudkenar MH, JahanianNajafabadi A, Tomita K, Kuwahara Y, Sato T et al. Mitochondrial characteristics contribute to proliferation and migration potency of MDA-MB-231 cancer cells and their response to cisplatin treatment. Life Sci. 2020;244:117339.
  • 2. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P. Isolation of mitochondriaassociated membranes and mitochondria from animal tissues and cells. Nat Protoc. 2009;4:1582-90.
  • 3. McCully JD, Levitsky S, del Nido PJ, Cowan DB. Mitochondrial transplantation for therapeutic use. Clini Transl Med. 2016;5:16.
  • 4. Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc, 2007;2:287-95.
  • 5. Li C, Cheung MKH, Han S, Zhang Z, Chen L, Chen JH et al. Mesenchymal stem cells and their mitochondrial transfer: a double-edged sword. Biosci Rep, 2019;39:BSR20182417..
  • 6. Orfany A, Arriola CG, Doulamis IP, Guariento A, Ramirez-Barbieri G, Moskowitzova K et al. Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg. 2020;71:1014-26.
  • 7. Gollihue JL, Rabchevsky AG. Prospects for therapeutic mitochondrial transplantation. Mitochondrion. 2017;35:70-9.
  • 8. Ali Pour P, Kenney MC, Kheradvar A. Bioenergetics consequences of mitochondrial transplantation in cardiomyocytes. J Am Heart Assoc. 2020;9:e014501.
  • 9. Nzigou Mombo B, Gerbal-Chaloin S, Bokus A, Daujat-Chavanieu M, Jorgensen C, Hugnot JP et al. MitoCeption: transferring isolated human msc mitochondria to glioblastoma stem cells. J Vis Exp. 2017;120:55245.
  • 10. Yang Y, Ye G, Zhang YL, He HW, Yu BQ, Hong YM et al. Transfer of mitochondria from mesenchymal stem cells derived from induced pluripotent stem cells attenuates hypoxia-ischemia-induced mitochondrial dysfunction in PC12 cells. Neural Regen Res. 2020;15:464-72.
  • 11. Wang JY, Li HYZ, Yao Y, Zhao TF, Chen YY, Shen YL et al. Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Ther. 2018;9:106.
  • 12. Caicedo A, Aponte PM, Cabrera F, Hidalgo C, Khoury M. Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int. 2017;2017:7610414. |
  • 13. Murray LMA, Krasnodembskaya AD. Concise review: intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. Stem Cells. 2019;37:14-25.
  • 14. Liu K, Zhou Z, Pan M, Zhang L. Stem cell-derived mitochondria transplantation: A promising therapy for mitochondrial encephalomyopathy. CNS Neurosci Ther. 2021;27:733-42.
  • 15. Vasanthan J, Gurusamy N, Rajasingh S, Sigamani V, Kirankumar S, Thomas EL et al. Role of human mesenchymal stem cells in regenerative therapy. Cells. 2020;10:54.
  • 16. Konari N, Nagaishi K, Kikuchi S, Fujimiya M. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci Rep. 2019;9:5184.
  • 17. Zhao J, Qu D, Xi Z, Huan Y, Zhang K, Yu C et al. Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF. Transl Res. 2021;235:102-14.
  • 18. Kubat GB, Ozler M, Ulger O, Ekinci O, Atalay O, Celik E et al. The effects of mesenchymal stem cell mitochondrial transplantation on doxorubicinmediated nephrotoxicity in rats. J Biochem Mol Toxicol. 2021;35:e22612.
  • 19. Caicedo A, Fritz V, Brondello JM, Ayala M, Dennemont I, Abdellaoui N et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep. 2015;5:9073.
  • 20. Elliott RL, Jiang XP, Head JF. Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity. Breast Cancer Res Treat. 2012;136:347-54.
  • 21. Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26:711- 23.
  • 22. Popov LD. One step forward: extracellular mitochondria transplantation. Cell Tissue Res. 2021;384:607-12.
  • 23. Roushandeh AM, Kuwahara Y, Roudkenar MH. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology. 2019;71:647-63.
  • 24. Chang JC, Chang HS, Wu YC, Cheng WL, Lin TT, Chang HJ et al. Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer. J Exp Clin Cancer Res. 2019;38:30.
  • 25. Bertero E, Maack C, O'Rourke B. Mitochondrial transplantation in humans: "magical" cure or cause for concern? J Clin Invest. 2018;128:5191-94.
  • 26. Cowan DB, Yao R, Thedsanamoorthy JK, Zurakowski D, Del Nido PJ, McCully JD. Transit and integration of extracellular mitochondria in human heart cells. Sci Rep. 2017;7:17450.
  • 27. Guariento A, Blitzer D, Doulamis I, Shin B, Moskowitzova K, Orfany A et al. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg. 2020;160:e15-29.
  • 28. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015;111:A3 B 1-3.
  • 29. van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-45.
  • 30. Yang C, Lee M, Song G, Lim W. tRNA(Lys)-derived fragment alleviates cisplatin-induced apoptosis in prostate cancer cells. Pharmaceutics. 2021;13:55.
  • 31. Nakamura Y, Park JH, Hayakawa K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol. 2020;324:113114..
  • 32. Elliott RL, Jiang XP, Head JF. Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity. Breast Cancer Res Treat. 2012;136:347-54.
  • 33. Emani SM, McCully JD. Mitochondrial transplantation: applications for pediatric patients with congenital heart disease. Transl Pediatr. 2018;7:169-75.
  • 34. McCully JD, Cowan DB, Emani SM, Del Nido PJ. Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion. 2017;34:127-34.
  • 35. Masuzawa A, Black KM, Pacak CA, Ericsson M, Barnett RJ, Drumm C et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2013;304:H966-82..
  • 36. Chernyak BV. Mitochondrial transplantation: a critical analysis. Biochemistry (Mosc). 2020;85:636-41.
Cukurova Medical Journal-Cover
  • ISSN: 2602-3032
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1976
  • Yayıncı: Çukurova Üniversitesi Tıp Fakültesi
Sayıdaki Diğer Makaleler

Romatoid artrit yönetiminde subkutan yüksek doz metotreksat tedavisinin etkisi

Müge AYDIN TUFAN, Emine ERSÖZLÜ BOZKIRLI, Hamide KART, Ahmet YÜCEL

Covid-19 pandemi sürecinde sağlık çalışanlarında belirsizliğe tahammülsüzlük, ruminatif düşünme biçimi ve psikolojik sağlamlık düzeyleri

Adeviye AYDIN, Berna ERSOY ÖZCAN

Doğum şeklinin ebeveynlik davranışı, yenidoğanı algılama ve maternal bağlanma üzerindeki etkisi

Seda ÇETİN AVCI, Nuray EGELİOĞLU CETİŞLİ

Diz osteoartriti bulunan hastalarda sinoviyal sıvılarındaki prostanoid düzeyleri ve ultrasonografik bulgular arasındaki ilişki

Gülsev ÖZEN, Ekin İlke ŞEN, Zeynep ÇELİK, Tuğba ŞAHBAZ, Gökçe TOPAL, Demirhan DIRAÇOĞLU

Tıpta uzmanlık alanlarının toplumsal cinsiyet açısından değerlendirilmesi

Necla YILMAZ, Ahmet ALKAN, Ayşe Gülen ERTÜMER, Zeynep KUH

Normal prepubertal çocuklarda hipofiz hacminin üç boyutlu MRG ile değerlendirilmesi

İlknur OKUR AKŞAN, Ahmet SARI

Preadölesanlarda obeziteyi etkileyen faktörler: Kapadokya örneği

Elif Tuba KOÇ, Zehra ÇALIŞKAN, Emine ERDEM

Kronik hepatit B'de hemogram ve biyokimyasal parametrelerin modifiye histolojik aktivite indeksi ve hepatik fibrozis ile ilişkisi

Selma ERDOĞAN DÜZCÜ, Şeyma ÖZTÜRK

Hepatoselüler karsinomda serum mikroRNA-122'nin önemi

Engin ONAN, Hikmet AKKIZ, Macit Umran SANDIKCI, Oğuz ÜSKÜDAR, Agah Bahadır ÖZTÜRK

Frontal QRS-T açısı ile subklinik hipotiroidizim arasında herhangi bir ilişki var mı?

Songul USALP, Emine ALTUNTAŞ, Bayram BAĞIRTAN, Ali BAYRAKTAR