Yoğunluk Fonksiyonel Teorisi Kullanılarak Bor Yüzeylerinin Suyla Etkileşiminin Araştırılması

Son yıllarda, bor bazlı malzemeler, hidrojen depolama uygulamaları için umut verici bir aday olarak önemli ilgi görmüştür. Bu çalışmada, yoğunluk fonksiyonel teori hesaplamaları kullanarak çeşitli bor yüzeylerinin suyla etkileşimini anlama yoluyla bor yüzeylerinin hidroliz potansiyelini araştırıyoruz. Rekonstrüksiyonlu ve rekonstrüksiyonsuz çeşitli α-bor (111) formları, kusurlu bor ve β-rhombohedral bor'un B28 alt birimini dahil ediyoruz. Tek bir su molekülünün davranışını anlamaya ek olarak, her bir yüzeydeki çoklu su moleküllerinin kümeleşme etkilerini de inceliyoruz.

Exploring the Interaction of Water with Boron Surfaces using Density Functional Theory

Boron-based materials have garnered significant interest in recent years as favorable candidates for storing hydrogen in various applications. This study focuses on examining the hydrolysis capabilities of boron surfaces through the analysis of water interaction with different boron surfaces via density functional theory calculations. We include several forms of α-boron (111) (reconstructed and unreconstructed forms, defective boron), and a B28 subunit of β-rhombohedral boron. In addition to understanding the behavior of a single water molecule, we also look at the possible clustering effects of multiple water molecules on each surface.

___

  • Eremets, M. I., Struzhkin, V. V., Mao, H. K., & Hemley, R. J. (2001). Superconductivity in boron. Science, 293(5528), 272-274. https://doi.org/10.1126/science.1062286.
  • Albert, B., & Hillebrecht, H. (2009). Boron: elementary challenge for experimenters and theoreticians. Angewandte Chemie International Edition, 48(46), 8640- 8668. https://doi.org/10.1002/anie.200903246.
  • Fujimori, M., Nakata, T., Nakayama, T., Nishibori, E., Kimura, K., Takata, M., & Sakata, M. (1999). Peculiar covalent bonds in α-rhombohedral boron. Physical Review Letters, 82(22), 4452. https://doi.org/10.1103/PhysRevLett.82.4452.
  • Oganov, A. R., Chen, J., Gatti, C., Ma, Y., Ma, Y., Glass, C. W., Liu, Z., Yu, T., Kurakevych, O. O., & Solozhenko, V. L. (2009). Ionic high-pressure form of elemental boron. Nature, 457, 863-867. https://doi.org/10.1038/ nature07736.
  • Er, S., de Wijs, G. A., & Brocks, G. (2009). DFT study of planar boron sheets: A new template for hydrogen storage. The Journal of Physical Chemistry C, 113(43), 18962-18967. https://doi.org/10.1021/jp9077079.
  • He, J., Wu, E., Wang, H., Liu, R., & Tian, Y. (2005). Ionicities of boron-boron bonds in B 12 icosahedra. Physical Review Letters, 94(1), 015504. https://doi.org/10.1103/PhysRevLett.94.015504.
  • Talley, C. P., Line Jr, L. E., & Overman Jr, Q. D. (1960). Preparation and properties of massive amorphous elemental boron. In Boron Synthesis, Structure, and Properties: Proceedings of the Conference on Boron (pp. 94-104). Springer. https://doi.org/10.1007/978-1-4899-6572-1_13.
  • Uno, R., & Kimura, K. (2021). Physical and chemical properties of boron solids. In I. Matsuda, & K. Wu (Eds.),2D Boron: Boraphene, Borophene, Boronene (pp. 121-158). Springer. https://doi.org/10.1007/978-3-030-49999-0_6.
  • Shen, Y., Xu, C., Huang, M., Wang, H., & Cheng, L. (2016). Research advances of boron clusters, borane and metaldoped boron compounds. Progress in Chemistry, 28(11), 1601. https://doi.org/10.7536/PC160533.
  • Hossain, M. K., Roy, D., & Ahmed, F. (2021). Boron nanocluster as a heavy metal adsorbent in aqueous environment: A DFT Study. Journal of Molecular Structure, 1237, 130302. https://doi.org/10.1016/j.molstruc.2021.130302.
  • White, M. A., Cerqueira, A. B., Whitman, C. A., Johnson, M. B., & Ogitsu, T. (2015). Determination of phase stability of elemental boron. Angewandte Chemie, 127(12), 3697-3700. https://doi.org/10.1002/ange.201409169.
  • Demirskyi, D., Badica, P., Kuncser, A., & Vasylkiv, O. (2022). Fracture peculiarities and high-temperature strength of bulk polycrystalline boron. Materialia, 21, 101346. https://doi.org/10.1016/j.mtla.2022.101346.
  • Ogitsu, T., Schwegler, E., & Galli, G. (2013). β-Rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration. Chemical Reviews, 113(5), 3425-3449. https://doi.org/10.1021/cr300356t.
  • Fan, C., Li, J., & Wang, L. (2014). Phase transitions, mechanical properties and electronic structures of novel boron phases under high-pressure: A first-principles study. Scientific Reports, 4(1), 1-11. https://doi.org/10.1038/srep06786.
  • An, Q., Reddy, K. M., Xie, K. Y., Hemker, K. J., & Goddard III, W. A. (2016). New ground-state crystal structure of elemental boron. Physical Review Letters, 117(8), 085501. https://doi.org/10.1103/ PhysRevLett.117.085501.
  • Marry, V., Rotenberg, B., & Turq, P. (2008). Structure and dynamics of water at a clay surface from molecular dynamics simulation. Physical Chemistry Chemical Physics, 10(32), 4802-4813. https://doi.org/10.1039/B807288D.
  • Meng, S., Wang, E. G., & Gao, S. (2004). Water adsorption on metal surfaces: A general picture from density functional theory studies. Physical Review B, 69(19), 195404. https://doi.org/10.1103/PhysRevB.69.195404.
  • Vassilev, P., van Santen, R. A., & Koper, M. T. (2005). Ab initio studies of a water layer at transition metal surfaces. The Journal of Chemical Physics, 122(5), 054701. https://doi.org/10.1063/1.1834489.
  • Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180.
  • Latorre, C. A., Ewen, J. P., Dini, D., & Righi, M. C. (2021). Ab initio insights into the interaction mechanisms between boron, nitrogen and oxygen doped diamond surfaces and water molecules. Carbon, 171, 575-584. https://doi.org/10.1016/j.carbon.2020.09.044.
  • Maier, S., & Salmeron, M. (2015). How does water wet a surface?. Accounts of Chemical Research, 48(10), 2783-2790. https://doi.org/10.1021/acs.accounts.5b00214.
  • Sharma, S., Agarwal, S., & Jain, A. (2021). Significance of hydrogen as economic and environmentally friendly fuel. Energies, 14(21), 7389. https://doi.org/10.3390/en14217389.
  • Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847- 3869. https://doi.org/10.1016/j.ijhydene.2019.12.059.
  • Vishnevetsky, I., Epstein, M., Abu-Hamed, T., & Karni, J. (2008). Boron hydrolysis at moderate temperatures: first step to solar fuel cycle for transportation. Journal of Solar Energy Engineering, 130(1), 014506. https://doi.org/10.1115/1.2807215.
  • Li, P., Yu, L., Matthews, M. A., Saidi, W. A., & Johnson, J. K. (2013). Deliquescence of NaBH4 from Density Functional Theory and Experiments. Industrial & Engineering Chemistry Research, 52(38), 13849-13861. https://doi.org/10.1021/ie401742u.
  • Vasudevan, S., & Lakshmi, J. (2012). Electrochemical removal of boron from water: Adsorption and thermodynamic studies. The Canadian Journal of Chemical Engineering, 90(4), 1017-1026. https://doi. org/10.1002/cjce.20585.
  • Beheshtian, J., Behzadi, H., Esrafili, M. D., Shirvani, B. B., & Hadipour, N. L. (2010). A computational study of water adsorption on boron nitride nanotube. Structural Chemistry, 21, 903-908. https://doi.org/10.1007/s11224-010-9605-y.
  • Rimola, A., & Sodupe, M. (2013). Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: The effect of surface curvature. Physical Chemistry Chemical Physics, 15(31), 13190-13198. https://doi.org/10.1039/C3CP51728D.
  • Ding, Y., Iannuzzi, M., & Hutter, J. (2011). Investigation of boron nitride nanomesh interacting with water. The Journal of Physical Chemistry C, 115(28), 13685-13692. https://doi.org/10.1021/jp110235y.
  • Won, C. Y., & Aluru, N. R. (2008). Structure and dynamics of water confined in a boron nitride nanotube. The Journal of Physical Chemistry C, 112(6), 1812- 1818. https://doi.org/10.1021/jp076747u.
  • Peng, C., Min, F., Liu, L., & Chen, J. (2016). A periodic DFT study of adsorption of water on sodiummontmorillonite (001) basal and (010) edge surface. Applied Surface Science, 387, 308-316. https://doi.org/10.1016/j.apsusc.2016.06.079.
  • Ranea, V. A., Schneider, W. F., & Carmichael, I. (2008). DFT characterization of coverage dependent molecular water adsorption modes on α-Al2O3 (0 0 0 1). Surface Science, 602(1), 268-275. https://doi.org/10.1016/j.susc.2007.10.029.
  • Yu, X., Zhang, X., Wang, S., & Feng, G. (2015). A computational study on water adsorption on Cu2O (1 1 1) surfaces: The effects of coverage and oxygen defect. Applied Surface Science, 343, 33-40. https://doi.org/10.1016/j.apsusc.2015.03.065.
  • Chen, X., Chen, S., & Wang, J. (2016). Screening of catalytic oxygen reduction reaction activity of metaldoped graphene by density functional theory. AppliedSurface Science, 379, 291-295. https://doi.org/10.1016/j.apsusc.2016.04.076.
  • Ogasawara, H., Brena, B., Nordlund, D., Nyberg, M., Pelmenschikov, A., Pettersson, L. G. M., & Nilsson, A. (2002). Structure and bonding of water on Pt (111). Physical Review Letters, 89(27), 276102. https://doi. org/10.1103/PhysRevLett.89.276102.
  • Ren, J., & Meng, S. (2008). First-principles study of water on copper and noble metal (110) surfaces. Physical Review B, 77(5), 054110. https://doi.org/10.1103/ PhysRevB.77.054110.
  • Omidirad, R., & Azizi, K. (2019). DFT study of chargecontrolled mechanism of water molecule dissociation on vacancy defected boron nitride nanosheets. Journal of Molecular Graphics and Modelling, 93, 107448. https://doi.org/10.1016/j.jmgm.2019.107448.
  • Feng, L. Y., Liu, Y. J., & Zhao, J. X. (2015). Ironembedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): A density functional theory (DFT) study. Journal of Power Sources, 287, 431-438. https://doi.org/10.1016/j.jpowsour.2015.04.094.
  • Yadav, V. K., Mir, S. H., & Singh, J. K. (2019). Density functional theory study of aspirin adsorption on BCN sheets and their hydrogen evolution reaction activity: A comparative study with graphene and hexagonal boron nitride. ChemPhysChem, 20(5), 687-694. https://doi.org/10.1002/cphc.201801173.
  • Al-Hamdani, Y. S., Michaelides, A., & von Lilienfeld, O. A. (2017). Exploring dissociative water adsorption on isoelectronically BN doped graphene using alchemical derivatives. The Journal of Chemical Physics, 147(16), 164113. https://doi.org/10.1063/1.4986314.
  • Jabraoui, H., Charpentier, T., Gin, S., Delaye, J. M., & Pollet, R. (2021). Atomic insights into the events governing the borosilicate glass–water interface. The Journal of Physical Chemistry C, 125(14), 7919-7931. https://doi.org/10.1021/acs.jpcc.1c00388.
  • Özdoğan, K., & Berber, S. (2009). Optimizing the hydrogen storage in boron nitride nanotubes by defect engineering. International Journal of Hydrogen Energy, 34(12), 5213-5217. https://doi.org/10.1016/j.ijhydene.2008.10.084.
  • Khossossi, N., Benhouria, Y., Naqvi, S. R., Panda, P. K., Essaoudi, I., Ainane, A., & Ahuja, R. (2020). Hydrogen storage characteristics of Li and Na decorated 2D boron phosphide. Sustainable Energy & Fuels, 4(9), 4538-4546. https://doi.org/10.1039/D0SE00709A.
  • Kumar, M. R., & Singh, S. (2022). Na Adsorption on Para Boron-Doped AGNR for Sodium-Ion Batteries (SIBs): A First Principles Analysis. Journal of Electronic Materials, 51(5), 2095-2106. https://doi.org/10.1007/s11664-022-09475-0.
  • Nasrollahpour, M., Vafaee, M., Hosseini, M. R., & Iravani, H. (2018). Ab initio study of sodium diffusion and adsorption on boron-doped graphyne as promising anode material in sodium-ion batteries. Physical Chemistry Chemical Physics, 20(47), 29889-29895. https://doi.org/10.1039/C8CP04088E.
  • Habibi, P., Vlugt, T. J., Dey, P., & Moultos, O. A. (2021). Reversible hydrogen storage in metal-decorated honeycomb borophene oxide. ACS Applied Materials & Interfaces, 13(36), 43233-43240. https://doi.org/10.1021/acsami.1c09865.
  • Zhang, Y., & Cheng, X. (2019). Hydrogen adsorption property of Na-decorated boron monolayer: A first principles investigation. Physica E: Low-dimensional Systems and Nanostructures, 107, 170-176. https://doi.org/10.1016/j.physe.2018.11.041.
  • Hafner, J. (2008) Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry, 29, 2044-2078. https://doi.org/10.1002/jcc.21057.
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865.
  • Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758. https://doi.org/10.1103/PhysRevB.59.1758.
  • Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. https://doi.org/10.1063/1.3382344.
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188. https://doi.org/10.1103/PhysRevB.13.5188.
  • Amsler, M., Botti, S., Marques, M. A., & Goedecker, S. (2013). Conducting boron sheets formed by the reconstruction of the α-boron (111) surface. Physical Review Letters, 111(13), 136101. https://doi.org/10.1103/ PhysRevLett.111.136101.
  • Zhou, X. F., Oganov, A. R., Shao, X., Zhu, Q., & Wang, H. T. (2014). Unexpected reconstruction of the α-boron (111) surface. Physical Review Letters, 113(17), 176101. https://doi.org/10.1103/PhysRevLett.113.176101.