Lüminesans özellik gösteren hekzagonal bor nitrür üretiminin araştırılması

Lüminesans özellik gösteren hekzagonal bor nitrür (hBN) borik asit, melamin Eu+3 ve Dy+3 ‘un 1200 °C’de 1 saat ısıl işlemi ile sentezlendi. Bor nitrür UV ışık ile uyarıldığında Eu+3 ve Dy+3 iyonlarının varlıkları maviden kırmızıya emisyon göstermiştir. Farklı [Dy+3 / Eu+3] oranları kullanılarak enerji verimliliği en yüksek olan formülasyon belirlenmiştir. Yüksek enerji verimliliğine (~0,83) sahip emisyon [Dy+3 / Eu+3] = 0,5 oranında görülmüştür. Ayrıca Dy+3 iyonlarının miktarının artmasıyla ışıldama yoğunluğunun azaldığı görülmüştür. Işıldama göstermeyen disprozyum borat (DyBO3) fazının oluşumu lüminesans özelliği olumsuz etkilemiştir.

Investigation of hexagonal boron nitride production with luminescent properties

Hexagonal boron nitride (hBN) with luminescent properties was synthesized by heat treatment of boric acid, melamine, Eu+3 and Dy+3 at 1200 °C for 1 hour. When boron nitride was excited with UV light, the presence of Eu+3 and Dy+3 ions showed emission from blue to red. The formulation with the highest energy efficiency was determined by using different [Dy+3 / Eu+3] ratios. Emission with high energy efficiency (~0.83) was observed at a rate of [Dy+3 / Eu+3] = 0.5. In addition, it was observed that the luminescence intensity decreased with the increase of the amount of Dy+3 ions. The formation of the non-emitting dysprosium borate (DyBO3) phase effected the luminescence property negatively.

___

  • Khan, S. A., Khan, N. Z., Hao, Z., Ji, W. W., Abadikhah, H., Hao, L., Xu, X. & Agathopoulos, S. (2018). Influence of substitution of Al-O for Si-N on improvement of photoluminescence properties and thermal stability of Ba2Si5N8: Eu2+ red emitting phosphors. Journal of Alloys and Compounds, 730, 249-254. https://doi.org/10.1016/j.jallcom.2017.09.335.
  • Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T., & Mitomo, M. (2010). Photoluminescence properties of rare earth doped α-Si3N4. Journal of Luminescence, 130(7), 1147- 1153. https://doi.org/10.1016/j.jlumin.2010.02.012.
  • Steckl, A. J., & Birkhahn, R. (1998). Visible emission from Er-doped GaN grown by solid source molecular beam epitaxy. Applied Physics Letters, 73(12), 1700-1702. https://doi.org/10.1063/1.122250.
  • Moon, S., Kim, J., Park, J., Im, S., Kim, J., Hwang, I., & Kim, J. K. (2023). Hexagonal boron nitride for nextgeneration photonics and electronics. Advanced Materials, 35(4), 2204161. https://doi.org/10.1002/ adma.202204161.
  • Jiang, T., Jin, Z., Yang, J., & Qiao, G. (2009). Investigation on the preparation and machinability of the B4C/BN nanocomposites by hot-pressing process. Journal of Materials Processing Technology, 209(1), 561-571. https://doi.org/10.1016/j.jmatprotec.2008.02.026.
  • Vel, L., Demazeau, G., & Etourneau, J. (1991). Cubic boron nitride: synthesis, physicochemical properties and applications. Materials Science and Engineering: B, 10(2), 149-164. https://doi.org/10.1016/0921-5107(91)90121-B.
  • Singla, P., Goel, N., & Singhal, S. (2015). Boron nitride nanomaterials with different morphologies: synthesis, characterization and efficient application in dye adsorption. Ceramics International, 41(9), 10565-10577. https://doi.org/10.1016/j.ceramint.2015.04.15.
  • Ferreira, F., Chaves, A. J., Peres, N. M. R., & Ribeiro, R. M. (2019). Excitons in hexagonal boron nitride singlelayer: a new platform for polaritonics in the ultraviolet. Journal of the Optical Society of America B, 36(3), 674- 683. https://doi.org/10.1364/JOSAB.36.000674.
  • Liang, L., Chen, C., Lv, Z., Xie, M., Yu, Y., Liang, C., Lou, Y., Li, C., & Shi, Z. (2019). Microwave-assisted synthesis of highly water-soluble LuVO4:Eu nanoparticles as anticounterfeit fluorescent ink. Journal of Luminescence, 206, 560-564. https://doi.org/10.1016/j.jlumin.2018.10.088.
  • Antoniak, M. A., Grzyb, J., & Nyk, M. (2019). Preserved two-photon optical properties of hydrophilic proteinsconjugated quantum dots. Journal of Luminescence, 209, 57-60. https://doi.org/10.1016/j.jlumin.2019.01.029.
  • Yu, B., Liu, D., Wang, Y., Zhang, T., Zhang, Y. M., Li, M., & Zhang, S. X. A. (2019). A solid-state emissive and solvatofluorochromic fluorophore and its application in high-contrast, fast, and repeatable thermochromic blends. Dyes and Pigments, 163, 412-419. https://doi.org/10.1016/j.dyepig.2018.12.008.
  • Zabiliūtė-Karaliūnė, A., Aglinskaitė, J., & Vitta, P. (2021). The reduction of the thermal quenching effect in laserexcited phosphor converters using highly thermally conductive hBN particles. Scientific Reports, 11(1), 6755. https://doi.org/10.1038/s41598-021-86249-4.
  • Jung, J. Y., Shim, Y. S., Son, C. S., Kim, Y. K., & Hwang, D. (2021). Boron nitride nanoparticle phosphors for use in transparent films for deep-UV detection and White light-emitting diodes. ACS Applied Nano Materials, 4(4), 3529-3536. https://doi.org/10.1021/acsanm.1c00013.
  • Jung, J. Y., Song, B. K., & Kim, Y. K. (2019). Tunable color emission of transparent boron nitride nanophosphors towards anti-counterfeiting application. Journal of Alloys and Compounds, 791, 81-86. https://doi.org/10.1016/j. jallcom.2019.03.269.
  • Jung, J. Y., Baek, Y. K., Lee, J. G., Kim, Y. D., Cho, S. H., & Kim, Y. K. (2018). The structure and luminescence of boron nitride doped with Ce ions. Applied Physics A, 124, 1-6. https://doi.org/10.1007/s00339-018-2054-y.
  • Wu, J., Yin, L., & Zhang, L. (2013). Tuning the electronic structure, bandgap energy and photoluminescence properties of hexagonal boron nitride nanosheets via a controllable Ce 3+ ions doping. RSC Advances, 3(20), 7408-7418. https://doi.org/10.1039/C3RA23132A.
  • Chen, H., Chen, Y., Li, C. P., Zhang, H., Williams, J. S., Liu, Y., Liu, Z. & Ringer, S. P. (2007). Eu-doped boron nitride nanotubes as a nanometer-sized visible-light source. Advanced Materials, 19(14), 1845-1848. https:// doi.org/10.1002/adma.200700493.
  • Li, Y., Shen, Y., Gong, C., Li, B., Huang, H., & Ji, K. (2018). Synthesis and characterization of boron nitride powder. AIP Conference Proceedings, 1971(1), 020007. https://doi.org/10.1063/1.5041102.
  • Hu, C., Xiao, Y., Zhao, Y., Chen, N., Zhang, Z., Cao, M., & Qu, L. (2013). Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries. Nanoscale, 5(7), 2726-2733. https://doi.org/10.1039/C3NR34002C.
  • Zhao, Y. C., Yu, D. L., Zhou, H. W., Tian, Y. J., & Yanagisawa, O. (2005). Turbostratic carbon nitride prepared by pyrolysis of melamine. Journal of Materials Science, 40(9-10), 2645-2647. https://doi.org/10.1007/ s10853-005-2096-3.
  • Torabi, O., Golabgir, M. H., Tajizadegan, H., & Jamshidi, A. (2016). Mechanochemical behavior of magnesiumboron oxide-melamine ternary system in the synthesis of h-BN nanopowder. Ceramics International, 42(5), 6450- 6456. https://doi.org/10.1016/j.ceramint.2016.01.084
  • Rounaghi, S. A., Rashid, A. K., Eshghi, H., & Khaki, J. V. (2012). Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum. Journal of Solid State Chemistry, 190, 8-11. https://doi.org/10.1016/j. jssc.2012.01.005.
  • Zhang, W., Liu, T., & Xu, J. (2016). Preparation and characterization of 10 B boric acid with high purity for nuclear industry. SpringerPlus, 5, 1-10. https://doi. org/10.1186/s40064-016-2310-6.
  • Elbeyli, İ. Y. (2015). Production of crystalline boric acid and sodium citrate from borax decahydrate. Hydrometallurgy, 158, 19-26. https://doi.org/10.1016/j. hydromet.2015.09.022.
  • Islam, M., Chakraborty, A. K., Gafur, M. A., & Rahman, M. (2019). Easy preparation of recyclable thermally stable visible-light-active graphitic-C3N4/TiO2 nanocomposite photocatalyst for efficient decomposition of hazardous organic industrial pollutants in aqueous medium. Research on Chemical Intermediates, 45(4), 1753- 1773. https://doi.org/10.1007/s11164-018-3703-7.
  • Töre, İ. (2015). Hexagonal boron nitride powder synthesis and sintering behaviours (Council of Higher Education Thesis Number: 198422) [Doctoral Dissertation, Anadolu University]. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=9FQtSikHPUTz3EQg-LiMOA&no=4PKj1qY5YTP6mTUGfuwp8A.
  • Kırbaş, İ. (2021). Improving the structural and physical properties of boric acid-doped rigid polyurethane materials. Composites and Advanced Materials, 30, 26349833211010819. https://doi. org/10.1177/26349833211010819.
  • Liu, Y., Chen, Z., Zhang, J., Ai, S., & Tang, H. (2019). Ultralight and thermal insulation carbon foam/SiO2 aerogel composites. Journal of Porous Materials, 26(5), 1305-1312. https://doi.org/10.1007/ s10934-019-00732-y.
  • Suryanto, B. H., Fang, T., Cheong, S., Tilley, R. D., & Zhao, C. (2018). From the inside-out: leached metal impurities in multiwall carbon nanotubes for purification or electrocatalysis. Journal of Materials Chemistry A, 6(11), 4686-4694. https://doi.org/10.1039/C7TA11257B.
  • Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72-123. https://doi.org/10.1016/j.apsusc.2016.07.030.
  • Hernández, M. F., Suárez, G., Cipollone, M., Conconi, M. S., Aglietti, E. F., & Rendtorff, N. M. (2017). Formation, microstructure and properties of aluminum borate ceramics obtained from alumina and boric acid. Ceramics International, 43(2), 2188-2195. https://doi.org/10.1016/j.ceramint.2016.11.002.
  • Hernández, M. F., Violini, M. A., Serra, M. F., Conconi, M. S., Suarez, G., & Rendtorff, N. M. (2020). Boric acid (H3BO3) as flux agent of clay-based ceramics, B2O 3 effect in clay thermal behavior and resultant ceramics properties. Journal of Thermal Analysis and Calorimetry, 139, 1717-1729. https://doi.org/10.1007/ s10973-019-08563-4.
  • Huber, C., Setoodeh Jahromy, S., Jordan, C., Schreiner, M., Harasek, M., Werner, A., & Winter, F. (2019). Boric acid: a high potential candidate for thermochemical energy storage. Energies, 12(6), 1086. https://doi.org/10.3390/en12061086.
  • Kıvanç, M., Barutca, B., Koparal, A. T., Göncü, Y., Bostancı, S. H., & Ay, N. (2018). Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Materials Science and Engineering: C, 91, 115-124. https://doi.org/10.1016/j.msec.2018.05.028.
  • Singh, B., Kaur, G., Singh, P., Singh, K., Kumar, B., Vij, A., ... & Kumar, A. (2016). Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy. Scientific Reports, 6(1), 1-10. https://doi.org/10.1038/srep35535.
  • Ansaloni, L. M. S., & de Sousa, E. M. B. (2013). Boron nitride nanostructured: Synthesis, characterization and potential use in cosmetics, Materials Sciences and Applications, 4(1), 22-28. https://doi.org/10.4236/ msa.2013.41004.
  • Ryu, S., Oh, H., & Kim, J. (2019). Facile liquid-exfoliation process of boron nitride nanosheets for thermal conductive polyphthalamide composite. Polymers, 11(10), 1628. https://doi.org/10.3390/polym11101628.
  • Weng, Q., Wang, X., Wang, X., Bando, Y., & Golberg, D. (2016). Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews, 45(14), 3989-4012. https://doi.org/10.1039/C5CS00869G.
  • Wang, J., Ma, F., & Sun, M. (2017). Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Advances, 7(27), 16801-16822. https://doi.org/10.1039/C7RA00260B.
  • Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Foundations and Advances, 32(5), 751-767. doi.org/10.1107/S0567739476001551.
  • Sharma, P. K., Dutta, R. K., & Pandey, A. C. (2012). Size-dependent emission efficiency and luminescence characteristics of YBO3: Tb3+ nanocrystals under vacuum ultraviolet excitations.Journal of Applied Physics, 112(5), 054321. https://doi.org/10.1063/1.4751335.