Akrilik kopolimerlerdeki siklik borat ester gruplarının boya ve vernik kaplamalara etkisinin araştırılması

Bu çalışmada, siklik borat ester içeren metakrilik monomerler oluşturulmuş ve değişen bor akrilat monomer içeriklerine (%5, 10 ve 20) sahip akrilik kopolimerlerin sentezlenmesinde kullanılmıştır. Monomerler, metil metakrilat, bütil akrilat, akrilik asit ve boron akrilat, bir solvent ortamında serbest radikal polimerizasyonu kullanılarak tüm polimerleri sentezlemek için kullanıldı. Polimerler, FTIR (Fouirer Transform Kızılötesi Spektrofotometre), DSC (Diferansiyel Tarama Kalorimetrisi), Jel Geçirgenlik Kromatografisi (GPC), 1H ve 11B NMR (Proton ve Bor Nükleer Manyetik Rezonans) kullanılarak karakterize edildi. Sac, galvaniz çelik, alüminyum gibi metal yüzeyler sabit kalınlıkta vernik ve boya bileşimleri ile kaplanmıştır. Kaplamaların fiziksel özelliklerini değerlendirmek için temas açısı değeri, parlaklık, sertlik, kuruma süresi, kap ömrü, sararma direnci ve UV sonrası parlaklık kaybı ölçülmüştür. Elde edilen bulgulara göre, polimerlere daha fazla borat ester grubu eklenmesi, kaplamaların kuruma süresini azalttığı gibi sertliklerini de artırmıştır. Piyasada bulunan boyalarda kullanılan bağlayıcılarla karşılaştırıldığında, %10 bor akrilat monomer içeren polimer, fiziksel özellikleri eşit veya daha üstün olan boya ve verniklerin üretilmesinde kullanılabilir.

Investigation of the effect of cyclic borate ester groups in acrylic copolymers on paint and varnish coatings

In this study, cyclic borate ester-bearing methacrylic monomers were created and employed to synthesize acrylic copolymers with varying boron acrylate monomer contents (5, 10, and 20%). The monomers, methyl methacrylate, butyl acrylate, acrylic acid, and boron acrylate, were used to synthesize all of the polymers using free radical polymerization in a solvent medium. The polymers were characterized using FTIR (Fourier transform infrared spectroscopy), DSC (differential scanning calorimetry), Gel permeation chromatography (GPC), 1H and 11B NMR (proton and boron nuclear magnetic resonance), and HPLC. Metal surfaces, such as sheet metal, galvanized steel, and aluminum, were covered with varnish and paint compositions that had a fixed thickness. Contact angle value, glossiness, hardness, drying time, pot life, yellowing resistance, and gloss loss following UV were all measured to assess the coatings' physical characteristics. According to the findings, adding more borate ester groups to polymers increased their hardness as well as decreased the drying time of the coatings. When compared to the binders used in commercially available paints, the polymer with 10% boron acrylate monomer can be utilized to produce paints and varnishes with equal or superior physical properties.

___

  • Özkan, Ş. G., Çebi, H., Delice, S., & Doğan, M. (1997). Bor minerallerinin özellikleri ve madenciliği [Properties and mining of boron minerals], 2. Endüstriyel Hammadddeler Sempozyumu [2. Industrial Raw Materials Symposium], İzmir, 224-228. https://doi.org/10.1021/acs.iecr.8b06337.
  • Kar, Y., Şen, N., & Demirbaş, A. (2006). Boron minerals in Turkey, their application areas and importance for the country's economy. Minerals & EnergyRaw Materials Report, 20(3-4), 2-10. https://doi.org/10.1080/14041040500504293.
  • Zhu, Y., Cai, J., Hosmane, N. S., & Zhang, Y. (2022). Introduction: Basic concept of boron and its physical and chemical properties. In Fundamentals and Applications of Boron Chemistry (pp. 1-57). Elsevier. https://doi.org/10.1016/B978-0-12-822127-3.00003-X.
  • Elçiçek, H. (2012). Sulu ortamda karbondioksit basıncı altında üleksit cevherinin çözünme kinetiği ve optimizasyonu [Dissolution kinetics and optimization of ulexite ore in aqueous medium under carbondioxide pressure] [M. Sc. thesis, Ataturk University]. Council of Higher Education Thesis Center (Thesis Number 312914).
  • Karadagli, E., & Cicek, B. (2020). Boron mining and enrichment waste: A promising raw material for porcelain tile production. International Journal of Applied Ceramic Technology, 17(2), 563-572. https://doi.org/10.1111/ijac.13438
  • Murthy, T. S., Sonber, J. K., Sairam, K., Majumdar, S., & Kain, V. (2020). Boron-based ceramics and composites for nuclear and space applications: synthesis and consolidation. In Handbook of advanced ceramics and composites: Defense, security, aerospace and energy applications, 703-738. Springer International Publishing.https://doi.org/10.1007/978-3-030-16347-1_22.
  • Gol, F., Kacar, E., Saritas, Z. G., Cibuk, S., Ture, C., Arslan, M., & Sen, F. (2023). The use of boron based materials on efficiency of environmentally friendly porous ceramics. Environmental Research, 216, 114454. https:// doi.org/10.1016/j.envres.2022.114454.
  • Dogan, M., Dogan, S. D., Savas, L. A., Ozcelik, G., & Tayfun, U. (2021). Flame retardant effect of boron compounds in polymeric materials. Composites Part B: Engineering, 222, 109088. https://doi.org/10.1016/j. compositesb.2021.109088.
  • Chauhan, N. P. S., Hosmane, N. S., & Mozafari, M. (2019). Boron-based polymers: Opportunities andchallenges. Materials Today Chemistry, 14, 100184. https://doi.org/10.1016/j.mtchem.2019.08.003.
  • Akarsu Dulgar, C., Çakır Çanak, T., & Serhatlı, İ. E. (2019). Effect of boron acrylate monomer content and multi-acrylate functional boron methacrylate on adhesive performance for water-borne acrylic polymers. Polymer Bulletin, 76, 2499-2517. https://doi.org/10.1007/s00289-018-2490-z.
  • He, C., & Pan, X. (2020). MIDA boronate stabilized polymers as a versatile platform for organoboron and functionalized polymers. Macromolecules, 53(10), 3700- 3708. https://doi.org/10.1021/acs.macromol.0c00665
  • Dong, J., He, C., Xu, C., Yun, J., & Pan, X. (2022). Vinyl boronate polymers with dynamic exchange properties. Polymer Chemistry, 13(46), 6408-6414. https://doi.org/10.1039/D2PY01274J.
  • Song, F., Wang, J., Zhang, L., Chen, R., Liu, Q., Liu, J.,& Duan, J. (2022). Synergistically improved antifouling efficiency of a bioinspired self-renewing interface via a borneol/boron acrylate polymer. Journal of Colloid and Interface Science, 612, 459-466. https://doi. org/10.1016/j.jcis.2021.12.187.
  • Li, Y., Chen, R., Feng, Y., Sun, X., Tang, L., Takahashi, K., & Wang, J. (2019). Synthesis of amphiphilic acrylate boron fluorinated polymers with antifouling behavior. Industrial & Engineering Chemistry Research, 58(19), 8016-8025. https://doi.org/10.1021/acs.iecr.8b06337.
  • Li, Y., Liao, J., Zhang, H., Tang, X., Zhong, S., Yu, Y., & Li, Q. (2021). Super-structural 2D ultrathin carbon nitride/acrylate boron silane polymer with multi-function for enhancing antifouling performance. Journal of Coatings Technology and Research, 18, 1051-1064. https://doi.org/10.1007/s11998-020-00459-5.
  • Zhang, Z., Li, Y., Chen, R., Liu, Q., Liu, J., Yu, J., ... & Wang, J. (2021). Photocatalytic antifouling coating based on carbon nitride with dynamic acrylate boron fluorinated polymers. New Journal of Chemistry, 45(2), 780-787. https://doi.org/10.1039/D0NJ05132B.
  • Temelkaya Bilgin, E., Akarsu Dülgar, C., Çakır Çanak, T., & Serhatlı, İ. E. (2021). Effect of boron methacrylate monomer on the thermal and pressure-sensitive adhesive properties of 2-EHA-based copolymer latexes synthesized via mini-emulsion polymerization procedure. Polymer Bulletin, 78, 133-145. https://doi.org/10.1007/s00289-020-03101-x.
  • Aliyeva, N., Canak, T. C., & Serhatlı, İ. E. (2021). Synthesis and characterization of boron-acrylate/Santa Barbara Amorphous-15 polymer composite. Journal of Applied Polymer Science, 138(20), 50445. https://doi.org/10.1002/app.50445.
  • Rawat, R. S., Talwar, M., Diwan, R. K., & Tyagi, A. K. (2021). A study on flame-retardancy property of UV curable epoxy coating for wooden surfaces using boron diluent and phosphorus based initiator. Journal of Polymer Materials, 38. https://doi.org/10.32381/JPM.2021.38.3-4.9
  • Temelkaya Bilgin, E. (2019). Synthesis and characterization of water-based acrylic polymers for pressure-sensitive adhesive applications via miniemulsion polymerization. [Doctoral Thesis, İstanbul Technical University]. Council of Higher Education Thesis Center (Thesis Number 560917).
  • Mirabedini, S. M., Zareanshahraki, F., & Mannari, V. (2020). Enhancing thermoplastic road-marking paints performance using sustainable rosin ester. Progress in Organic Coatings, 139, 105454. https://doi.org/10.1016/j.porgcoat.2019.105454.
  • Lim, W. B., Kim, J. W., Lee, J. H., Bae, J. H., Min, J. G., & Huh, P. (2023). Synthesis of a room-temperature curable acrylic-urethane polymer binder for road markings with high transmittance. Materials, 16(3), 1322. https://doi.org/10.3390/ma16031322.
  • Pereira, A. P., Ribeiro, J. L., Oliveira, A. C. F., Vasconcelos, C. K. B., Viana, M. M., & Lins, V. D. F. C. (2021). Ligninmodified road marking paint: weathering aging studies. REM - International Engineering Journal, 74, 225-233. https://doi.org/10.1590/0370-44672020740113
  • Hadizadeh, E., Pazokifard, S., Mirabedini, S. M., & Ashrafian, H. (2020). Optimizing practical properties of MMA-based cold plastic road marking paints using mixture experimental design. Progress in Organic Coatings, 147, 105784. https://doi.org/10.1016/j.porgcoat.2020.105784.