Küresel grafitli dökme demirin darbe dayanımı üzerinde borlama işleminin etkisi

Küresel grafitli dökme demir numuneleri, kutu (katı) borlama yöntemi ile farklı sıcaklık ve sürelerde borlanmış, daha sonra fırında soğutulmuştur. Isıl işlemlerin darbe dayanımına etkisini kıyaslamak için, küresel grafitli dökme demir numunelere fırında soğutma, suda ve yağda su verme ve temperleme işlemleri gibi farklı ısıl işlemler uygulanmıştır. Uygulanan ısıl işlemler ve borlama parametreleri sonucunda malzemenin darbe dayanımının değiştiği belirlenmiştir. Borlama işlemi ile küresel grafitli dökme demir malzemenin yüzey özellikleri geliştirilmesine rağmen, darbe dayanımında meydana gelmesi muhtemel düşme, servis koşullarında kritik öneme sahip bulunmaktadır. Su verme ve temperleme işlemi ile kıyaslandığı zaman, optimum borlama parametreleri kullanılarak, uygun darbe dayanımının elde edilebileceği sonucuna varılmıştır.

The effect of boriding treatment on the impact strength of spheroidal graphite cast iron.

The spheroidal graphite cast iron samples were boronized by the box (solid) boronizing process at different temperatures and times, and then materials were cooled in the furnace. Heat treatments such as cooling in furnace, quenching in water or oil, and tempering treatment were applied to ductile iron specimens in order to compare the effects of different processes on the impact resistance. It has been determined that the impact strength of the material changes as a result of the applied heat treatments and boriding parameters. Although the surface properties of spheroidal graphite cast iron material are improved by the boriding process, the possible decrease in impact strength is critical inservice conditions. It has been concluded that, appropriate impact strength can be obtained by using optimum boriding parameters when compared with the quenching and tempering process.

___

  • Keough, J. R., Hayrynen, K. L., & Pioszak, G. L. (2010). Designing with austempered ductile iron (ADI). AFS Proceedings, 10(129), 1-15.
  • Sahin, S., & Meric, C. (2002). Investigation of the effect of boronizing on cast irons. Materials Research Bulletin, 37(5), 971-979. https://doi.org/10.1016/S0025-5408(02)00697-9.
  • . von Matuschka, A. G. (1980). Boronizing. C. Hanser. ISBN 9783446131767.
  • Selçuk, B., Ipek, R., Karamiş, M. B., & Kuzucu, V. (2000). An investigation on surface properties of treated low carbon and alloyed steels (boriding and carburizing). Journal of Materials Processing Technology, 103(2), 310-317. https://doi.org/10.1016/S0924-0136(99)00488-4.
  • Guobiao, L., Zhongjian, Z., Zhihai, Q., Xiang, L., Jiahua, W., & Feifei, Z., (2013). Boronizing mechanism of cemented carbides and their wear resistance. International Journal of Refractory Metals and Hard Materials, 41, 351-355. https://doi.org/10.1016/j.ijrmhm.2013.05.008.
  • Dong, X., Hu, J., Huang, Z., Wang, H., Gao, R., & Guo,Z. (2009). Microstructure and properties of boronizing layer of Fe-based powder metallurgy compacts prepared by boronizing and sintering simultaneously. Science of Sintering, 41(2), 199-207. https://doi.org/10.2298/SOS0902199D.
  • Béjar, M. A., & Moreno, E. (2006). Abrasive wear resistance of boronized carbon and low-alloy steels. Journal of Materials Processing Technology, 173(3), 352-358. https://doi.org/10.1016/J.JMATPROTEC.2005.12.006.
  • Baydogan, M., & Akray, S. I. (2009). Successive boronizing and austempering for GGG-40 grade ductile iron. Journal of Iron and Steel Research, International, 16, 50-54. https://doi.org/10.1016/S1006-706X(09)60027-3.
  • Nam, K. S., Lee, K. H., Lee, S. R., & Kwon, S. C. (1998). A study on plasma-assisted bonding of steels. Surface and Coatings Technology, 98(1-3), 886-890. https://doi. org/10.1016/S0257-8972(97)00174-6.
  • Liu, R., Wang, B., Wu, J., Xue, W., Jin, X., Du, J., & Hua, M. (2014). Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel. Applied Surface Science, 321, 348-352. https://doi.org/10.1016/J.APSUSC.2014.10.026.
  • Krzyminski, H. & Kunst, H., Borieren refraktärer Metalle. (1973). Zeitschrift Für Wirtschaftlichen Fabrikbetrieb, 68(9). https://doi.org/10.1515/zwf-1973-680909.
  • Hunger, H. J., & Trute, G. (1994). Boronizing to produce wear-resistant surface layers. Heat Treatment of Metals, 21(2) 31-39.
  • Şen, U. (1997). The boriding of some ductile irons and their properties (Thesis Number 68883) [Doctoral Dissertation, Istanbul Technical University]. Council of Higher Education Thesis Center.
  • Çelikyürek, İ., Baksan, B., & Gürler, R. (2004). Boriding of spheroidal graphite cast irons. 2nd International Boron Symposium (pp. 231-235). ISBN 9789758964956.
  • Bayça, S. U., & Şahin, S. (2004). Borlama. Mühendis ve Makine, 45(532), 51-59. Retrieved from https://www.mmo.org.tr/sites/default/ files/1ae36ecb9b3eee6_ek.pdf.
  • Fırtına, Ö. (2019). Characterization and boriding of ductile cast iron with boric acid based alternative boriding powder mixture (Thesis Number 563963) [Masters Dissertation, Manisa Celal Bayar University]. Council of Higher Education Thesis Center.
  • Sen, U., Sen, S., & Yilmaz, F. (2003). Effect of copper on boride layer of boronized ductile cast irons. Vacuum, 72(2), 199-204. https://doi.org/10.1016/S0042-207X(03)00127-1.
  • Keddam, M., Hudáková, M., Ptačinová, J., Moravčík, R., Gogola, P., Gabalcová, Z., & Jurči, P. (2021). Characterization of boronized layers on Vanadis 6 tool steel. Surface Engineering, 37(4), 445-454. https://doi.org/10.1080/02670844.2020.1781377.
  • Jurči, P., & Hudáková, M. (2020). Characterization of microstructure and fracture performance of boronized H11 grade hot-work tool steel. Materials Performance and Characterization, 9(3), 219674043, https://doi.org/10.1520/MPC20190086.
  • Sen, U., Sen, S., Koksal, S., & Yilmaz, F. (2005). Fracture toughness of borides formed on boronized ductile iron. Materials & Design, 26(2), 175-179. https:// doi.org/10.1016/J.MATDES.2004.05.015.
  • Sen, S., Ozbek, I., Sen, U., & Bindal, C. (2001). Mechanical behavior of borides formed on borided cold work tool steel. Surface and Coatings Technology, 135(2-3), 173-177. https://doi.org/10.1016/ S0257-8972(00)01064-1.
  • Sen, U., Sen, S., & Yilmaz, F. (2004). Improving the surface properties of ductile irons by boronizing. Key Engineering Materials, 264-268(I), 541-544. https://doi.org/10.4028/www.scientific.net/kem.264-268.541.
  • Toktaş, G., & Korkmaz, S. (2023). Indentation fracture toughness of boronized unalloyed and alloyed ductile iron. Materials Chemistry and Physics, 296, 127232. https://doi.org/10.1016/j.matchemphys.2022.127232.
  • Yalamaç, E., Türkmen, İ., & Fırtına, Ö. (2021). Characterization and kinetic analysis of iron boride layer formed on the GGG 70 ductile cast iron. Transactions of the Indian Institute of Metals, 74, 1701-1711. https://doi.org/10.1007/s12666-021-02249-y.
  • Mutahhara Yazıcı, A. (2006). Boro-tempering of ductile iron (Thesis Number 181425) [Masters Dissertation, Afyon Kocatepe University]. Council of Higher Education Thesis Center.
  • Toktaş, A., Toktaş, G. & Gülsün, K. (2018). Effect of boronizing parameters and matrix structures on the wear property of ductile iron. Machines. Technologies Materials, 12(1), 33-36. https://stumejournals.com/ journals/mtm/2018/1/33.