Bor Nitrür ile kaplı 18650 Tip Li iyon Pillerinin Isıl ve Elektrokimyasal Özelliklerinin İyileştirilmesi

Batarya teknolojileri yüksek enerji yoğunluğuna ve hızlı şarj gereksinimlerine doğru ilerledikçe, lityum-iyon pillerin sahip olduğu termal bozunma sebepli güvenlik endişeleri devam edecektir. Bu endişe sorununu çözmek için, daha iyi ısı dağılımı sağlayan yeni malzeme çözümleri ortaya çıkmaktadır. Hekzagonal bor nitrür, yüksek termal iletkenliği nedeniyle termal yönetim sistemlerinde ısıl iletken malzeme olarak umut verici bir adaydır. Isı dağılımını etkin bir şekilde sağlayan hekzagonal bor nitrürün batarya yüzeylerinde kullanılması ile termal bozunma kaynaklı risklerin de azalacağı öngörülmektedir. Bu amaçla 18650 tipi pillerin dış yüzeyindeki polimer ambalaj çıkartıldıktan sonra sprey yöntemi kullanılarak hekzagonal bor nitrür (hBN) kaplama işlemi yapılmıştır. Kaplama işlemi sonrası batarya hücresine 10C akım hızında 100 defa şarj-deşarj testleri yapılmış olup bu süreçte meydana gelen ısıl değişimler incelenmiş ve kapasite ve iç direnç değerlerinde meydana gelen değişimler hesaplanmıştır. Elde edilen bulgular, polimer ambalajı çıkartılan ve hBN kaplama yapılan bataryanın etkin bir ısı dağılımı sergilediği, kapasite korunumunu iyileştirildiği ve iç dirençte daha az değişiklik meydana getirdiğini göstermiştir. Bu nedenle, hBN kaplama, Li-ion pillerin termal yönetimi için etkili bir çözüm olma potansiyeline sahiptir.

Enhancing the Thermal and Electrochemical Properties of 18650 Type Li-ion Batteries via Boron Nitride Coating

Lithium-ion batteries have a significant safety concern since they are prone to thermal runaway as the battery technology advances to high energy density and fast charge requirements. To address this issue, new material solutions are emerging that provide better heat dissipation. Boron nitride is a promising candidate as a heat conductor material in thermal management systems because of its high thermal conductivity. Therefore, this material allows effective heat dissipation and reduces the risk of thermal runaway issues. To this end, hexagonal boron nitride (hBN) was coated onto the outer cases of 18650-type batteries to dissipate the heat produced inside the battery. A cyclic charge-discharge test was performed on the hBN-coated battery sample at 10C to compare the results with a reference sample with only a polymer insulator. The findings revealed that the hBN coating on the insulator-free battery case offered efficient heat dissipation, improved capacity retention, and less change in internal resistance. Thus, the hBN coating has the potential as a solution for the efficient thermal management of Li-ion battery cases.

___

  • Previati, G., Mastinu, G. & Gobbi, M. (2022) Thermal management of electrified vehicles-a review. Energies, 15, 326 https://doi.org/10.3390/en15041326.
  • Tekin, S. & Türkakar, G. (2023) Experimental investigation of an alternative battery pack thermal management system. Journal of Energy Storage, 59, 106485. https://doi.org/10.1016/j.est.2022.106485.
  • Masias, A., Marcicki, J. & Paxton, W.A. (2021) Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Letters, 6, 621-630. https://doi.org/10.1021/acsenergylett.0c02584.
  • Nitta, N., Wu, F., Lee, J. T. & Yushin, G. (2015) Li-ion battery materials: present and future. Materials Today, 18, 252-264. https://doi.org/10.1016/j.mattod.2014.10.040.
  • Lu, Y., Zhang, Y., Zhang, Q., Cheng, F. & Chen, J. (2020) Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries. Particuology, 53, 1-11.https://doi.org/10.1016/j.partic.2020.09.004.
  • Cready, E., Lippert, J., Pihl, J., Weinstock, I., Symons, P. & Jungst, R. G. (2003) Technical and economic feasibility of applying used EV batteries in stationary applications: A study for the DOE energy storage systems program. Sand Report. https://www.osti.gov/servlets/purl/809607.
  • McKerracher, R. D., Guzman-Guemez, J., Wills, R. G. A., Sharkh, S. M. & Kramer, D. (2021) Advances in prevention of thermal runaway in lithium-ion batteries. Advanced Energy and Sustainability Research, 2, 2000059. https://doi.org/10.1002/aesr.202000059.
  • Liu, Y., Zhu, Y. & Cui, Y. (2019) Challenges and opportunities towards fast-charging battery materials. Nature Energy, 4, 540-550. https://doi.org/10.1038/s41560-019-0405-3.
  • Carroll, J. K., Alzorgan, M., Page, C. & Mayyas, A. R. (2016) Active battery thermal management within electric and plug-in hybrid electric vehicles. SAE Technical Papers, 2016-01-2221, 2016. https://doi. org/10.4271/2016-01-2221.
  • Roe, C., Feng, X., White, G., Li, R., Wang, H., Rui, X., ... & Wu, B. (2022) Immersion cooling for lithium-ion batterie-a review. Journal of Power Sources. 525, 231094. https:// doi.org/10.1016/j.jpowsour.2022.231094.
  • Saw, L. H., Ye, Y. & Tay, A. A. O. (2014) Feasibility study of boron nitride coating on lithium-ion battery casing. Applied Thermal Engineering. 73, 154-161. https://doi.org/10.1016/j.applthermaleng.2014.06.061.
  • Weng, Q., Wang, X., Wang, X., Bando, Y. & Golberg, D. (2016) Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chemical Society Reviews. 45, 3989-4012. https://doi. org/10.1039/c5cs00869g.
  • Zhang, Y., Huang, J., Cao, M., Liu, Z. & Chen, Q. (2021) A novel flexible phase change material with well thermal and mechanical properties for lithium batteries application. Journal of Energy Storage, 44. 103433.https://doi.org/10.1016/j.est.2021.103433.
  • Aydın, H., Çelik, S. Ü. & Bozkurt, A. (2017) Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics, 309, 71-76. https://doi.org/10.1016/j. ssi.2017.07.004.
  • Acharya, L., Babu, P., Behera, A., Pattnaik, S. P. & Parida, K. (2021) Novel synthesis of boron nitride nanosheets from hexagonal boron nitride by modified aqueous phase bi-thermal exfoliation method. Materials Today: Proceedings. 35, 239-242. https://doi.org/10.1016/j. matpr.2020.05.328.
  • Mortazavi, B., Yang, H., Mohebbi, F., Cuniberti, G. & Rabczuk, T. (2017) Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation. Applied Energy. 202, 323-334. https://doi.org/10.1016/j. apenergy.2017.05.175.
  • Li, X., Huang, Q., Deng, J., Zhang, G., Zhong, Z. & He, F. (2020). Evaluation of lithium battery thermal management using sealant made of boron nitride and silicone. Journal of Power Sources. 451, 227820. https://doi.org/10.1016/j.jpowsour.2020.227820.
  • Wang, Z., Zhang, K., Zhang, B., Tong, Z., Mao, S., Bai, H. & Lu, Y. (2022) Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites. Green Energy & Environment. 7, 1401-1410. https://doi.org/10.1016/j.gee.2022.02.007.
  • Ge, X., Chen, Y., Liu, W., Zhang, G., Li, X., Ge, J. & Li, C., (2022) Liquid cooling system for battery modules with boron nitride based thermal conductivity silicone grease. RSC Advances, 12, 4311-4321. https://doi.org/10.1039/d1ra08929c.
  • Saw, L. H., Poon, H. M., Thiam, H. S., Cai, Z., Chong, W. T., Pambudi, N. A. & King, Y. J. (2018) Novel thermal management system using mist cooling for lithium-ion battery packs. Applied Energy, 223, 146-158. https://doi.org/10.1016/j.apenergy.2018.04.042.
  • Kar, F., Hacıoğlu, C., Göncü, Y., Söğüt, İ., Şenturk, H., Burukoğlu Dönmez, D., ... & Ay, N., (2021) In vivo assessment of the effect of hexagonal boron nitride nanoparticles on biochemical, histopathological, oxidant and antioxidant status. Journal of Cluster Science, 32. 517-529. https://doi.org/10.1007/s10876-020-01811-w.
  • Aktas, A. (2020). Design and implementation of adaptive battery charging method considering the battery temperature. IET Circuits, Devices & Systems, 14, 72- 79. https://doi.org/10.1049/iet-cds.2019.0270.
  • Bodenes, L., Naturel, R., Martinez, H., Dedryvère, R., Menetrier, M., Croguennec, L., ... & Fischer, F., (2013). Lithium secondary batteries working at very high emperature: Capacity fade and understanding of aging mechanisms. Journal of Power Sources, 236, 265-275. https://doi.org/10.1016/j.jpowsour.2013.02.067.
  • Liu, C., Neale, Z. G. & Cao, G. (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today. 19, 109-123. https://doi.org/10.1016/j.mattod.2015.10.009.