Üç boyutlu bir arama yüzeyi için mobil robotların yol planlaması

Mobil robotların yol planlaması, tek/çok katlı kapalı alan endüstriyel robotik navigasyon uygulamalarında hayatibir öneme sahiptir. Bu çalışmada, çok katlı ve her kat için birden çok katlar arası geçişin mümkün olduğuendüstriyel bir binada mobil robotların yönlendirilmesi için graf arama algoritmasına dayanan bir optimum yolplanlaması önerilmiştir. Yol planlaması için başlangıç ve varış noktalarının yer aldığı iki katı içeren 3 boyutlukübik yüzey baz alınarak mesafe hesaplanmıştır. Dijkstra graf arama algoritması, engellerden sakınarak en kısayolun bulunması için belirlenen yüzeylerde başlangıç noktasından tüm noktalara olan mesafeleri hesapladığındandolayı çalışmada bu algoritma tercih edilmiştir. Çalışmada mobil robotun yönlendirilmesi için farklı durumlarıiçeren iki farklı senaryo oluşturulmuştur. Bu senaryolar hedef noktasının mobil robotun bulunduğu kattakibaşlangıç noktası ile aynı katta ve farklı katta olması durumlarını içermektedir. Makalede, MATLAB ortamındaelde edilen en kısa yolu gösteren benzetim sonuçları sunulmuştur.

Three dimensional searching surface path planning of mobile robots

Route planning of mobile robots has vital importance in the industrial robotic navigation applications of single / multi-floors closed area. In this study, it is proposed to apply an optimal route planning based on the graph search algorithm for orienting mobile robots in multiple floors industrial building where multiple exits are possible for each floor. For the route planning, the distance is calculated on the basis of a 3-dimensional cubic surface containing two floors, in which the starting and destination points are located. Dijkstra graph searching algorithm is preferred since it calculates the distances from starting point to all points in specified surfaces in order to create shortest route avoiding obstacles. In the study, two different scenarios including different situations are created for orienting the mobile robot. These scenarios include the situation of the destination point on the same and on the different floor with the starting point of the mobile robot. Simulation results of the shortest routes are presented in the paper using MATLAB environment.

___

  • [1] Galán-García J.L., Aguilera-Venegas G., Galán-García M.Á., Rodríguez-Cielos P. 2015. A new Probabilistic Extension of Dijkstra’s Algorithm to simulate more realistic traffic flow in a smart city. Applied Mathematics and Computation, 267: 780-789.
  • [2] Deng Y., Chen Y., Zhang Y., Mahadevan S. 2012. Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Applied Soft Computing, 12 (3): 1231-1237.
  • [3] Dobrilovic D., Jevtic V., Beker I., Stojanov Z. 2012. Shortest-path based model for warehouse inner transportation optimization. In Applied Computational Intelligence and Informatics (SACI), 7th IEEE International Symposium. 63-68.
  • [4] Chen Y.Z., Shen S.F., Chen T., Yang R. 2014. Path optimization study for vehicles evacuation based on Dijkstra algorithm. Procedia Engineering, 71: 159-165.
  • [5] Garcia M., Viguria, A., Ollero A. 2013. Dynamic graph-search algorithm for global path planning in presence of hazardous weather. Journal of Intelligent & Robotic Systems, 1-11.
  • [6] Yershov D.S., LaValle S.M. 2011. Simplicial Dijkstra and A* algorithms for optimal feedback planning. In Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference. 3862- 3867.
  • [7] Jiang J.R., Huang H.W., Liao J.H., Chen S.Y. 2014. Extending Dijkstra's shortest path algorithm for software defined networking. In Network Operations and Management Symposium (APNOMS) IEEE, 16th Asia-Pacific, 1-4.
  • [8] Djojo M.A., Karyono K. 2013. Computational load analysis of Dijkstra, A*, and Floyd-Warshall algorithms in mesh network. In Robotics, Biomimetics, and Intelligent Computational Systems (ROBIONETICS), IEEE International Conference, 104-108.
  • [9] Kang H.I., Lee B., Kim K. 2008. Path planning algorithm using the particle swarm optimization and the improved Dijkstra algorithm. In Computational Intelligence and Industrial Application, PACIIA'08. Pacific-Asia Workshop IEEE, 2, 1002-1004.
  • [10] Fadzli S.A., Abdulkadir S.I., Makhtar M., Jamal A.A. 2015. Robotic indoor path planning using dijkstra's algorithm with multi-layer dictionaries. In Information Science and Security (ICISS), 2nd International Conference, 1-4.
  • [11] Zhang D., Wei Z., Kim J.H., Tang S. 2010. An optimized Dijkstra algorithm for Embedded-GIS. In Computer Design and Applications (ICCDA), International Conference, 1: 147-150.
  • [12] Yin C., Wang H. 2010. Developed Dijkstra shortest path search algorithm and simulation. In Computer Design and Applications (ICCDA), International Conference, 1: 116-119.
  • [13] http://www.zafercomert.com/Medya/2015_05_11_2_121_69f9a888.pdf#viewer.action=download (Erişim tarihi: 01.03.2016).
  • [14] Dijkstra E.W. 1959. A note on two problems in connexion with graphs. Numerische mathematik, 1 (1): 269-271.
  • [15] Boğar E., Beyhan S. 2016. A Hybrid Genetic Algorithm for Mobile Robot Shortest Path Problem, International Journal of Intelligent Systems and Applications in Engineering, 4: 264-267.
  • [16] Wang H., Yu Y., Yuan Q. 2011. Application of Dijkstra algorithm in robot path-planning. In Mechanic Automation and Control Engineering (MACE), Second International Conference IEEE, 1067-1069.
  • [17] Ferone D., Festa P., Guerriero F., Laganà D. 2016. The constrained shortest path tour problem. Computers & Operations Research, 74: 64-77.