Emotiv Epoc ile Durağan Hal Görsel Uyarılmış Potansiyel Temelli Beyin Bilgisayar Arayüzü Uygulaması

Beyin Bilgisayar Arayüzü (BBA), geleneksel iletişim yöntemlerinin kullanılmasını engelleyen sinir-kashastalıklarına sahip olan bireyler için yeni bir iletişim seçeneği sunmaktadır. Durağan hal görsel uyarılmışpotansiyel (DHGUP) temelli BBA sistemleri sağladığı yüksek hız ve kullanım kolaylığı sebebi ile dikkatleriüzerine çekmektedir. Bu çalışmada Emotiv Epoc elektroansefalografi (EEG) cihazı kullanılarak DHGUP temelliBBA uygulaması gerçekleştirilmiştir. Çalışma, 5 kullanıcının katılımı ile ön hazırlık ve gerçek zamanlı deneylerolmak üzere iki adımdan oluşmaktadır. Ön hazırlık deneyleri ile gerçek zamanlı BBA sisteminde kullanılacakDHGUP tespit metodu ve EEG sinyali toplama süresinin belirlenmesi istenmiştir. Ön hazırlıkta farklı frekansasahip 12 adet görsel uyaran kullanıcıya sıra ile sunulmakta ve 5 saniye boyunca sinyal kaydı yapılmaktadır. Önhazırlık sinyallerinde 2 saniyelik EEG pencerelerinde %82.2 DHGUP tespit doğruluğu ve 68.8 bit/sn. bilgi aktarımhızına ulaşılmıştır. Gerçek zamanlı BBA sisteminde ise tuş takımı biçiminde tasarlanan görsel uyaran düzeneği ilekullanıcıların yalnız beyin sinyalleri ile telefon numaralarını yazmalarına imkân sağlanmıştır. Sistem 2 sn. seçimsüresi ve 0.5 sn. tespit ve geri besleme süresi olmak üzere 2.5 saniyede 1 karakterin yazımına imkan sağlamaktadır.Deneylerde tasarlanan BBA ile 11 haneli telefon numarasının ortalama 40 saniyede yazdırılabildiği gösterilmiştir.Ayrıca çalışmada yüksek DHGUP tespit doğruluğu sağlayan eğitim verisi destekli bir yöntemin Emotiv Epoc ileuygulanabilirliği incelenmiştir. Yöntem, yaygın yöntemlere göre daha yüksek DHGUP tespiti sağlamamıştır. Bumakale DHGUP temelli BBA uygulaması için kılavuz niteliğini taşımaktadır.

Implementation of Steady State Visual Evoked Potential based Brain Computer Interface with Emotiv EPOC

Brain computer interface (BCI) offers a new communication pathway to individuals with neuromuscular disorders that prevent the use of traditional communication channels. The steady state visual evoked potential (SSVEP) based BCI systems take attention since it has high speed and ease of use. In this study, SSVEP based BCI implementation was performed by using Emotiv Epoc electroencephalography (EEG) device. This study consists of two steps, preliminary preparation and real-time experiments with participation of 5 subjects. In preliminary preparation stage, the SSVEP detection method and the EEG signal length that will be used in the real-time BBA were wanted to be decide. In the preliminary preparation stage, 12 visual stimuli with different frequencies are presented to the user in sequence and signal recording is performed for 5 seconds. In preparation signals, 82.2% SSVEP detection accuracy and 68.8 bits/sec. information transfer rate were reached in the 2-second EEG epochs. In the real-time BCI, the visual stimuli designed in the form of a keypad allows users to write phone numbers only with the brain signals. The system allows entering a character in 2.5 seconds, including 2 sec selection time and 0.5 sec detection and feedback time. Experiments with 5 users showed that 11-digit phone number can be entered about 40 seconds with the BCI. In addition, it was investigated the applicability of a training data supported method which provides high SSVEP detection accuracy using Emotiv Epoc. The method did not provide higher SSVEP detection accuracy than traditional methods. This article is a guideline for SSVEP-based BCI application.

___

  • [1] Kokswijk J.V., Hulle M.V. 2010. Self adaptive BCI as service-oriented information system for patients with communication disabilities, 2010 4th International Conference on New Trends in Information Science and Service Science (NISS), 264-269, 11-13 May 2010, Gyeongju.
  • [2] Santhosh J., Bhatia M., Sahu S., Anand S. 2004. Quantitative EEG analysis for assessment to “plan” a task in amyotrophic lateral sclerosis patients: a study of executive functions (planning) in ALS patients. Brain Res Cogn Brain Res, 22 (1): 59-66.
  • [3] Wolpaw J.R., Birbaumer N., McFarland D.J., Pfurtscheller G., Vaughan T.M. 2002. Brain– computer interfaces for communication and control. Clinical Neurophysiology, 113 (6): 767-791. doi:10.1016/S1388-2457(02)00057-3
  • [4] Sellers E.W., Vaughan T.M., Wolpaw J.R. 2010. A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis, 11 (5): 449-455.
  • [5] Chen X., Wang Y., Nakanishi M., Gao X., Jung T.P., Gao S. 2015. High-speed spelling with a noninvasive brain–computer interface. Proceedings of the National Academy of Sciences, 112 (44): 1–10. doi:10.1073/pnas.1508080112
  • [6] Sözer A.T., Fidan C.B. 2017. Novel Detection Features for SSVEP Based BCI: Coefficient of Variation and Variation Speed. BRAIN: Broad Research in Artificial Intelligence and Neuroscience, 8 (2): 144-150.
  • [7] Wang Y., Gao X., Hong B., Jia C., Gao S. 2008. Brain-Computer Interfaces Based on Visual Evoked Potentials. IEEE Engineering in Medicine and Biology Magazine, 27 (5): 64-71.
  • [8] Zhang Y., Zhou G., Jin J., Wang X., Cichocki A. 2015. SSVEP recognition using common feature analysis in brain–computer interface. Journal of Neuroscience Methods, 244: 8-15.
  • [9] Sozer A.T., Fidan C.B. 2016. Implementation of a steady state visual evoked potantial based brain computer interface. In 2016 24th Signal Processing and Communication Application Conference (SIU) (pp. 1173–1176). IEEE. doi:10.1109/SIU.2016.7495954
  • [10] Sözer A.T., Fidan C.B. 2018. Novel spatial filter for SSVEP-based BCI: A generated reference filter approach. Computers in Biology and Medicine, 96: 98-105.
  • [11] Van Vliet M., Robben A., Chumerin N., Manyakov N.V., Combaz A., Van Hulle M.M. 2012. Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living, BRC 2012 (pp. 1-6). IEEE. doi:10.1109/BRC.2012.6222186
  • [13] Choi B., Jo S. 2013. A Low-Cost EEG System-Based Hybrid Brain-Computer Interface for Humanoid Robot Navigation and Recognition. PLoS ONE, 8(9): e74583. doi:10.1371/journal.pone.0074583.
  • [14] Badcock N.A., Mousikou P., Mahajan Y., de Lissa P., Thie J., McArthur G. 2013. Validation of the Emotiv EPOC ® EEG gaming system for measuring research quality auditory ERPs. PeerJ, 1 (1): e38. doi:10.7717/peerj.38.
  • [15] Chumerin N., Manyakov N.V., Van Vliet M., Robben A., Combaz A., Van Hulle M.M. 2013. Steady-state visual evoked potential-based computer gaming on a consumer-grade EEG device. IEEE Transactions on Computational Intelligence and AI in Games, 5(2): 100-110.
  • [16] Cogent Graphics. 2017. Laboratory of Neurobiology. Retrieved July 1, 2017, from http://www.vislab.ucl.ac.uk/cogent_graphics.php
  • [17] Hwang H.J., Lim J.H., Jung Y.J., Choi H., Lee S.W., Im C.H. 2012. Development of an SSVEPbased BCI spelling system adopting a QWERTY-style LED keyboard. Journal of Neuroscience Methods, 208 (1): 59-65. doi:10.1016/j.jneumeth.2012.04.011
  • [18] Sanchez G., Diez P.F., Avila E., Leber E.L. 2011. Simple communication using a SSVEP-based BCI. Journal of Physics: Conference Series, 332 (1): 012017. doi:10.1088/1742- 6596/332/1/012017.
  • [19] Yan Z., Gao X., Bin G., Hong B., Gao S. 2009. A half-field stimulation pattern for SSVEP-based brain-computer interface. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2009, 6461-4. doi:10.1109/IEMBS.2009.5333544.
  • [20] Lin Z., Zhang C., Wu W., Gao X. (007) Frequency recognition based on canonical correlation analysis for SSVEP-Based BCIs. IEEE Transactions on Biomedical Engineering, 54 (6): 1172- 1176. doi:10.1109/TBME.2006.889197.
  • [21] Poryzala P., Materka A. 2014. Cluster analysis of CCA coefficients for robust detection of the asynchronous SSVEPs in brain–computer interfaces. Biomedical Signal Processing and Control, 10 (1): 201-208.
  • [22] Cao L., Ju Z., Li J., Jian R., Jiang C. 2015. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces. Journal of Neuroscience Methods, 253: 10-17.
  • [23] Nakanishi M., Wang Y., Wang Y.T., Mitsukara Y., Jung T.P. 2014. A High-Speed Brain Speller Using Steady-State Visual Evoked Potentials. International Journal of Neural Systems, 24 (06): 1450019. doi:10.1142/S0129065714500191.
  • [24]Wu Z., Su S. 2014. A dynamic selection method for reference electrode in SSVEP-based BCI. PLoS ONE, 9 (8): e104248. doi:10.1371/journal.pone.0104248.
  • [25] Nakanishi M., Wang Y., Wang Y.T., Jung T.P. 2015. A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials. PloS one, 10(10), e0140703. doi:10.1371/journal.pone.0140703
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü