Biyodizel Yan Ürünü Olan Gliserolden Üretilen Katalizör ile Yakıt Katkı Maddesi Bütil Levulinat Sentezi

Biyodizelin yan ürünü olarak gliserol üretiminin fazlalığı gliserolün değerlendirilmesi için araştırmacıları yeniürün arayışlarına itmiştir. Bu çalışmada biyo-türevli gliserol, tek bir adımda karbonizasyon ve sülfonasyon yoluylaheterojen katı asit katalizör sentezi için bir karbon başlatıcısı olarak kullanılmıştır. Üretilen katalizör, yakıtbiyokatkı maddesi bütil levulinat sentezlemek üzere levulinik asit ile bütanolün esterleşme reaksiyonunukatalizlemek için kullanılmıştır. Katalizör karakterizasyonu; FTIR, TGA ve XRD cihazları kullanılarakyapılmıştır. Katalizörün katalitik aktivitesini belirlemek için deneyler farklı reaksiyon sıcaklıklarında, farklı molarbesleme oranlarında ve farklı katalizör yükleme oranlarında kesikli reaktörde gerçekleştirilmiştir. En yüksekdönüşüm değeri 70oC’de, molar besleme oranı (alkol/asit) 9:1 kullanılarak ve %7 katalizör yükleme oranında altısaatin sonunda %96.25 olarak elde edilmiştir. Katalizör esterleşme reaksiyonunun polar ortamından zarargörmemektedir. Bu nedenle, katalitik aktivitesini kaybetmeden sekiz kez tekrar kullanılmıştır.

Synthesis of Fuel Additive Butyl Levulinate by Biodiesel Byproduct Glycerol Derived Catalyst

Researchers search of new products for the consumption of the excess glycerol which is produced as byproduct of biodiesel. In this study, bio-derived glycerol was used as a carbon precursor for heterogeneous solid acid catalyst synthesis via partial sulphonation and carbonization in a single step. The as-produced catalyst was used to catalyze levulinic acid esterification reaction with butanol to synthesize fuel bioadditive butyl levulinate. Catalyst characterization was carried out by using FTIR, TGA and XRD equipments. Experiments were conducted at different reaction temperatures, different molar feed ratios, and different catalyst loading ratios in a batch reactor for determination of the catalytic activity of the catalyst. The highest conversion value was obtained as 96.25% for 6 h while the reaction conditions are reaction temperature of 70 oC, molar feed ratio of (alcohol/acid) 9:1, catalyst concentration of 7 wt.%. The catalyst does not damage in polar reaction medium. For this reason, it was reused eight times without losing catalytic activity.

___

  • [1] Gonçalves V.L.C., Pinto B.P., Silva J.C., Mota C.J.A. 2008. Acetylation of glycerol catalyzed by different solid acids, Catalysis Today, 133-135:73-677.
  • [2] Rodrígue I.D., Adriany C., Gaigneaux E.M. 2011. Glycerol acetylation on sulphated zirconia in mild conditions, Catalysis Today, 167 (1): 56-63.
  • [3] Zhu S., Zhu Y., Gao X., Mo T., Zhu Y., Lia Y. 2013. Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids, Bioresource Technology, 130: 45-51.
  • [4] Khayoon M.S., Hameed B.H. 2012. Synthesis of hybrid SBA-15 functionalized with molybdophosphoric acid as efficient catalyst for glycerol esterification to fuel additives, Applied Catalysis A: General, 433-434: 152–161.
  • [5] Kuwahara Y., Fujitani T., Yamashita H. 2014. Esterification of levulinic acid with ethanol over sulfated mesoporous zirconosilicates: Influences of the preparation conditions on the structural properties and catalytic performances, Catalysis Today, 237: 18-28.
  • [6] Fernandes D.R., Rocha A.S., Mai E.F., Mota J.A., Silva V. 2012. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts, Applied Catalysis A: General, 425- 426: 199-204.
  • [7] Yang J., Li G., Zhang L., Zhang S. 2018. Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups, Catalysts, 8 (1): 14.
  • [8] Ramli, N.A.S., Zaharudin N.H., Amin N.A.S. 2017. Esterification of Renewable Levulinic Acid To Levulinate Esters Using Amberlyst-15 As A Solid Acid Catalyst, Jurnal Teknologi (Sciences & Engineering), 79 (1): 137-142.
  • [9] Dharne S., Bokade V.V. 2011. Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay, Journal of Natural Gas Chemistry, 20: 18-24.
  • [10] Maheria K.C., Kozinski J., Dalai A. 2013. Esterification of Levulinic Acid to n-Butyl Levulinate Over Various Acidic Zeolites, Catalysis Letters, 143: 1220-1225.
  • [11] Devi B.LA.P, Gangadhar K.N., Prasad P.S.S, Jagannadh B., Prasad R.B.N. 2009. A Glycerol-based Carbon Catalyst for the Preparation of Biodiesel, ChemSusChem, 2: 617-620.
  • [12] Okoye P.U., Abdullah A.Z., Hameed B.H. 2017. Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst, Fuel, 209: 538-544.
  • [13] Varkolu M., Moodley V., Potwana F.S.W., Jonnalagadda S.B., Zyl W.E. 2017. Esterification of levulinic acid with ethanol over bio-glycerol derived carbon–sulfonic-acid, Reaction Kinetics Mechanisms and Catalysis, 120 (1): 69-80.
  • [14] Ummadisetti C., Rachapudi B.N.P., Bethala L.A.P.D. 2014. Glycerol‐based SO3H‐Carbon Catalyst: A green recyclable catalyst for the chemoselective synthesis of pentaerythritol diacetals, European Journal of Chemistry, 5 (3): 536‐540.
  • [15] Ribeiro R.S., Silva A.M.T., Pinho M.T., Figueiredo J.L., Faria J.L., Gomes H.T. 2014. Development of glycerol-based metal-free carbon materials for environmental catalytic applications, Catalysis Today, 240: 61-66.
  • [16] Gangadhar K.N., Vijay M., Prasad R.B.N., Devi B.L.A.P. 2013. Glycerol-Based Carbon-SO3H Catalyzed Benign Synthetic Protocol for the Acetylation of Alcohols, Phenols and Amines under Solvent-Free Conditions, Green and Sustainable Chemistry, 3: 122-128.
  • [17] Ilgen O. 2014. Investigation of reaction parameters, kinetics and mechanism of oleic acid esterification with methanol by using Amberlyst 46 as a catalyst, Fuel Processing Technology, 124: 134-139.
  • [18] Jamil F., Al-Muhtaseb A.H., Naushad M., Baawain M., Al-Mamun A., Saxena S.K., Viswanadham N. 2017. Evaluation of synthesized green carbon catalyst from waste date pits for tertiary butylation of phenol, Arabian Journal of Chemistry, inpress, DOI: 10.1016/j.arabjc.2017.04.009.
  • [19] Leal G.F., Ramos L.A., Barrett D.H., Curvelo A.A.S., Rodella C.B. 2015. A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process, Thermochimica Acta, 616: 9-13.
  • [20] Mehmet B. 2001. Yağların katalitik hidrojenasyonunda işlem parametrelerinin selektivite ve izomer yapı oluşumu üzerindeki etkileri. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi, 127s, İzmir.
  • [21] Mehmet Y. 2010. Biyodizel Prosesi Yan Ürünü Gliserinin Katalitik Hidrojenasyonu. Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans tezi, 64s, Eskişehir.
  • [22] Khayoon M.S., Hameed B.H. 2011. Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst, Bioresource Technology, 102 (19): 9229-9235.
  • [23] Zhou L., Al-Zaini E., Adesina A.A. 2013. Catalytic characteristics and parameters optimization of the glycerol acetylation over solid acid catalysts, Fuel, 103: 617-625.
  • [24] Zhang W., Qing W., Ren Z., Li W., Chen J. 2014. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor, Bioresource Technology, 172: 16-21.
  • [25] Karakus S. 2014. Pervaporasyon Esterleşme Hı̇brı̇t Prosesı̇ ı̇le İzobutı̇l Akrı̇lat Sentezı̇. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 163s, İzmir.
  • [26] Sert E., Atalay F.S. 2014. n-Butyl acrylate production by esterification of acrylic acid with nbutanol combined with pervaporation, Chemical Engineering and Processing: Process Intensification, 81: 41-47.
  • [27] Chen Y., Zhang X., Dong M., Wu Y., Zheng G., Huang J., Zheng, X. 2016. MCM-41 immobilized 12-silicotungstic acid mesoporous materials: Structural and catalytic properties for esterification of levulinic acid and oleic acid, Journal of the Taiwan Institute of Chemical Engineers, 61: 147-155.
  • [28] Jyoti G., Keshav A., Anandkumar J. 2017. Esterification of acrylic acid with ethanol using pervaporation membrane reactor, Korean Journal of Chemical Engineering, 34 (6): 1661-1668.
  • [29] Parida K.M., Mallick S. 2007. Silicotungstic acid supported zirconia : An effective catalyst for esterification reaction, Journal of Molecular Catalysis A: Chemical, 275: 77-83.
  • [30] Balaraju M., Nikhitha P., Jagadeeswaraiah K., Srilatha K., Prasad P.S.S., Lingaiah N. 2010. Acetylation of glycerol to synthesize bioadditives over niobic acid supported tungstophosphoric acid catalysts, Fuel Processing Technology, 91 (2): 249-253.
  • [31] Jyoti G., Keshav A., Anandkumar J. 2015. Review on Pervaporation :Theory, Membrane Performance, and Application to Intensification of Esterification Reaction, Journal of Engineering, 2015: 1-24.
  • [32] Ramli N.A.S., Sivasubramaniam D., Amin N.A.S. 2017. Esterification of Levulinic Acid Using ZrO2-Supported Phosphotungstic Acid Catalyst for Ethyl Levulinate Production, BioEnergy Research, 10 (4): 1105-1116.
  • [33] Delgado P., Sanz M.T., Beltrán S., Alberto L. 2010. Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation, Chemical Engineering Journal, 165: 693- 700.
  • [34] Qing W., Chen J., Shi X., Wu J., Hu J., Zhang W. 2016. Conversion enhancement for acetalization using a catalytically active membrane in a pervaporation membrane reactor, Chemical Engineering Journal, 313: 1396-1405.
  • [35] Peters T.A., Tuin J.V.D., Houssin C., Vorstman M.A.G., Benes N.E., Vroon Z.A.E.P., Holmen A., Keurentjes J.T.F. 2005. Preparation of zeolite-coated pervaporation membranes for the integration of reaction and separation, Catalysis Today, 104 (2-4): 288-295.
  • [36] Castanheiro J.E., Ramos A.M., Fonseca I.M., Vital J. 2006. Esterification of acetic acid by isoamylic alcohol over catalytic membranes of poly(vinyl alcohol) containing sulfonic acid groups, Applied Catalysis A: General, 311 (1-2): 17-23.