İnsan Hareketleri Tabanlı Gerçek Rasgele Sayı Üretimi

Gerçek rasgele sayı üreteci (GRSÜ) ile rasgele sayı üretmek için deterministik olmayan bir gürültü kaynağındanyararlanılır. Rasgelelik derecesinin daha yüksek olması nedeniyle GRSÜ, Sözde rasgele sayı üreticisinden dahagüvenli sayı üretir. Bu makalede, insan hareketleri ile rasgele sayı üreten bir GRSÜ öneriyoruz. Önerilen GRSÜ,hemen hemen tüm insanların kullandığı mobil telefonlardaki ivme ve GPS sensörlerini kullanmaktadır. İlk olarak,mobil telefonu taşıyan kişinin 3-D ortamdaki hareketleri sonucunda ivme ve konum değişimleri android tabanlıbir mobil cihazdan örneklenerek elde edilmiştir. Daha sonra, elde edilen bu işaretler, normalizasyon işlemiuygulanarak ham sayı dizilerine dönüştürülmüştür. Son olarak, sayı dizilerinin istatistiksel özellikleriniiyileştirmek için XOR son işlemi uygulanmış ve rasgele sayı üretimi gerçekleştirilmiştir. Kişi yürürken, koşarkenve stabil konumda iken sensörlerden elde edilen toplamda 15 veri seti oluşturulmuştur. Sayıların istatistikselözellikleri NIST test süiti, Skala İndeks ve otokorelasyon ile incelenmiştir. Önerilen GRSÜ, cep telefonu platformuiçin uygun, evrensel ve düşük maliyetli olup kişiye özgü rasgele sayı üretmektedir.

True Random Number Generation Based on Human Movements

A non-deterministic noise source is used to generate the random number with the real random number generator (TRNG). Because the degree of randomness is higher, TRNG produces a more secure number than the PRNG number generator. In this article, we propose a TRNG that produces random numbers with human movements. The proposed TRNG uses the acceleration and GPS sensors in almost all people's mobile phones. First, the acceleration and position changes resulting from the movements of the person carrying the mobile phone in the 3- D environment are obtained by sampling from an android based mobile device. Then, these obtained marks are converted into raw number sequences by normalization process. Finally, to improve the statistical properties of the number sequences, XOR finishing was performed and random number generation was performed. A total of 15 data sets were generated from the sensors while walking, running and in stable position. The statistical properties of the numbers were examined by NIST test suite, Scale Index and autocorrelation. The proposed TRNG is suitable for mobile phone platform, universal and low cost, and it is possible to produce random number of the unique number.

___

  • [1] Tokunaga C,. Blaauw D,. Mudge T. 2008. True random number generator with a metastabilitybased quality control. IEEE Journal of Solid-state Circuits, 43 (1): 78-85.
  • [2] Tuncer S.A. 2018. Real-Time Random Number Generation With RO-Based Double PUF. J. Microelectron. Electron. Compon. Mater, 48 (2): 121-128.
  • [3] Tuncer T., Avaroğlu E., Türk M., Özer A.B. 2014. Implementation of non-periodic sampling true random number generator on FPGA. J. Microelectron. Electron. Compon. Mater, 4 (4): 296-302.
  • [4] Koyuncu I., Ozcerit A.T., Pehlivan I., Avaroglu E. 2014. Design and implementation of chaos based true random number generator on FPGA. In 22nd Signal Processing and Communications Applications Conference (SIU), pp. 236–239.
  • [5] Wei Z., Katoh Y. Ogasahara S,. Yoshimoto Y., Kawai K., Ikeda Y., Eriguchi K., Ohmori K., Yoneda S. 2016. True random number generator using current difference based on a fractional stochastic model in 40-nm embedded ReRAM. IEEE Electron. Dev. Meet., 4.8.1-4.8.4.
  • [6] Walker J. 2002. HotBits: Genuine Random Numbers Generated by Radioactive Decay. http://www.fourmilab.ch/hotbits (Erişim tarihi: 01.02.2019).
  • [7] Moosavi S.R., Nigussie E., Virtanen S., Isoaho J. 2017. Cryptographic Key Generation Using ECG Signal. 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp.1024-1031.
  • [8] Chen X., Zhang Y., Zhang G., Zhang Y. 2012. Evaluation of ECG Random Number Generator for Wireless Body Sensor Networks Security. 5th International Conference on BioMedical Engineering and Informatics (BMEI 2012), pp. 1308-1311.
  • [9] Dang N., Tran D., Ma W., Nguyen K. 2017. EEG-Based Random Number Generators. Lecture Notes in Computer Science, 10394: 245-256.
  • [10] Chen G. 2014. Are electroencephalogram (EEG) signals pseudo-random number generators?. Journal of Computational and Applied Mathematics, 268: 1-4.
  • [11] Chen I.T. 2013. Random Numbers Generated from Audio and Video Sources. Mathematical Problems in Engineering, Vol.2013, Article ID 285373.
  • [12] Nikolic S. Veinovic M. 2016. Advancement of True Random Number Generators Based on Sound Cards Through Utilization of a New Post-processing Method. Wireless Pers Commun 91: 603.
  • [13] Zhou Q., Liao X., Wong K., Hu Y., Xiao D. 2009. True random number generator based on mouse movement and chaotic hash function. Information Sciences, 179 (19): 3442-3450.
  • [14] Xingyuan W., Xue Q., Lin T. 2012. A novel true random number generator based on mouse movement and a one-dimensional chaotic map,. Mathematical Problems in Engineering, vol. 2012, Article ID 931802.
  • [15] Hu Y., Liao X.F., Wong K., Zhou Q. 2009. A true random number generator based on mouse movement and chaotic cryptography. Chaos, Solitons & Fractals, 40 (3): 2286-2293.
  • [16] Marc-Andre´ S., Barbara S., Peter B., Karsten W. 2012. Analysing Humanly Generated Random Number Sequences: A Pattern-Based Approach. Plos ONE, 7 (7): e41531.
  • [17] Zajac F.E., Neptune R.R., Kautz S.A. 2002. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16 (3): 215-32.
  • [18] Avaroğlu E., Türk M. 2013. Son işlemin Gerçek Rasgele Sayı Üreteçleri Üzerindeki etkisinin İncelenmesi. 6. Uluslararası Bilgi Güvenliği ve Kriptoloji Konferansı, Ankara-Türkiye, 291-294, 20-21 Eylül.
  • [19] Kwok S.-H., Ee Y.-L., Chew G., Zheng K., Khoo K., Tan C.-H. 2011. A comparison of postprocessing techniques for biased random number generators. Proc. Inf. Security Theory Practice, 6633: 175-190.
  • [20] Tuncer S.A, Kaya T. 2018. True Random Number Generation from Bioelectrical and Physical Signals. Computational and mathematical methods in medicine, Vol. 2018, Article ID 3579275.
  • [21] Benìtez R., Bolos V.J., Ramìrez M.E. 2010. A wavelet-based tool for studying non-periodicity. Comput. Math. Appl., 60: 634.
  • [22] Yang Y.G., Zhao Q.Q. 2016. Novel pseudo-random number generator based on quantum random walks. Scientific Reports, 6: 20362.
  • [23] Karakaya B., Çelik V., Gülten A. 2017. Chaotic cellular neural network-based true random number generator. Int. J. Circ. Theor. Appl., 45: 1885-1897.
  • [24] Chan J.J.M., Thulasiraman P., Thomas G., Thulasiram R. 2016. Ensuring Quality of Random Numbers from TRNG: Design and Evaluation of Post-Processing Using Genetic Algorithm. Journal of Computer and Communications, 4: 73-92.
  • [25] Chen X.M., Wang L., Li B.X., Wang Y., Li X., Liu Y.P., Yang H.Z. 2016. Modeling Random Telegraph Noise as a Randomness Source and its Application in True Random Number Generation. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst., 35: 1435-1448.
  • [26] NIST Special Publication 800-22, http://csrc.nist.gov/rng/rng2.html, 2001 (Erişim tarihi: 01.02.2019).
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü