Lorentziyan Düzlem Hareketinde İkinci Eğrilik Merkezi

Bu çalışmanın amacı Lorentziyan düzlem hareketinde bir noktanın takip ettiği yörüngenin için ikinci eğrilikmerkezini bulmak ve yorumlamaktır. Bunun için Lorentziyan düzlem kinematiğinin temel prensipleri ve [9]tarafından tanımlanan Lorentziyan ani invaryantlar göz önüne alınarak bu hareket boyunca keyfi bir noktanın takipettiği yörüngenin birinci ve ikinci eğrilik merkezleri bulundu. Ayrıca birinci ve ikinci eğrilik merkezleri ile ilgiliözel durumlar araştırıldı ve geometrik yorumlar yapıldı. Bu özel durumları karakterize eden teoremler ifade veispat edildi ve ilgili örnekler verildi.

Secondary Center of Curvature in a Lorentzian Planar Motion

The aim of this manuscript is to find and interpret the second center of curvature for the trajectory of a point in the Lorentzian planar motion. For this purpose, the first and second curvature centers of the trajectory of an arbitrary point along the motion have been found under the consideration of the basic principles of Lorentzian planar kinematics and Lorentzian instantaneous invariants defined by [9]. In addition, special cases related to the first and second curvature centers have been investigated and geometric interpretations have been given. The theorems characterizing these special cases have been expressed and proved.

___

  • [1] Müller R. 1962. Papers on Geometrical Theory of Motion Applied to Approximate Straight Line Motion. Translated from the German by D. Tesar, Kansas State University Bulletin, Special Report 21, V+265pp.
  • [2] Müller R. 1920. About the Curvature of the Path Evolutes of Rigid Plane Systems, I.e. 23-40. Translation of Uber die Krfimmung der Bahnevoluten bei Starren Ebenen Systemen, Z. Math. Physik, 36: 193-205, 1891. See M. Krause, Analysis der Ebenen Bewgung, Berlin-Leipzig, 111- 122.
  • [3] Bottema O. 1961. On Instantaneous Invariants, Proceedings of the International Conference for Teachers of Mechanisms. New Haven (Ct), Yale University, pp: 159–164.
  • [4] Bottema O., Roth B. 1990. Theoretical Kinematics. Dover, New York.
  • [5] Roth B. 2015. On the Advantages of Instantaneous Invariants and Geometric Kinematics. Mech. Mach. Theory, 89: 5–13.
  • [6] Veldkamp G.R. 1963. Curvature Theory in Plane Kinematics. J.B. Wolters Groningen, PhD thesis.
  • [7] Bottema O. 1981. Secondary Centres of Curvatures for the Point-Paths of a Planar Motion. Mechanism and Machine Theory, 16: 147–151.
  • [8] Eren K., Ersoy S. 2018. Circling-Point Curve in Minkowski Plane. Conference Proceedings of Science and Technology, 1 (1): 1–6.
  • [9] Eren K., Ersoy S. 2018. Cardan Positions in the Lorentzian Plane, Honam Mathematical J., 40 (1): 185–196.
  • [10] Eren K., Ersoy S. 2019. A Comparison of Original and Inverse Motion in Minkowski Plane. AAM Intern, 5: 56-67.
  • [11] Eren K., Ersoy S. 2018. Burmester Theory in Cayley–Klein Planes with Affine Base. Journal of Geometry, 109 (3): 45-57.
  • [12] Cera M., Pennestrì E. 2018. Generalized Burmester Points Computation by means of Bottema’s İnstantaneous İnvariants and İntrinsic Geometry. Mechanism and Machine Theory, 129: 316–335.
  • [13] Fankhanel A. 2012. On Conics in Minkowski Planes. Extracta Mathematicae, 27 (1): 13–29.
  • [14] Aceff-Sánchez F., Del Riego Senior L. 2007. Geometry of the Conics on the Minkowski Plane. https://arxiv.org/abs/0712.2234v1 (Erişim tarihi: 13.12.2007).
  • [15] Horváth Á.G. 2016. Constructive Curves in Non-Euclidean Planes (Plenary Lecture). 19-th Scientific-Professional Colloquium on Geometry and Graphics, 4-6 September, Abstract Book, 1s. Starigrad-Paklenica.