Quantum Sutton-Chen Potansiyeli ile Modellenen Sıvı PdSi Alaşımının Kristalizasyon ve Camsı Geçiş Sıcaklığına Basıncın Etkisi

Bu çalışmada atomlar arasındaki etkileşmelerin belirlenmesinde Kuantum Sutton Chen (K-SC) potansiyel fonksiyonu kullanılarak farklı soğutma hızları için model PdSi sıvı alaşımının kristallenme (Tc) ve camsı geçiş sıcaklıklarına (Tg) basıncınetkisi incelendi. 2,5x1011 K/s ve 2,5x1012K/s soğutma hızlarında sıvı fazdaki alaşım sisteminin sırasıyla kristal ve amorf faza dönüştüğü tespit edildi. Camsı geçiş sıcaklığı, Wendt-Abraham parametresi ve radyal dağılım fonksiyonu (RDF) piklerinden belirlendi. Basınç artışınınkristallenme, camsı geçiş sıcaklığıve Tg/Tm oranınıyükselterek camsı oluşum kabiliyetini arttırdığı tespit edildi.

The Effect of Pressure to the Crystallization and Glass Transition Temperature of Liquid PdSi Alloy Modelled with Quantum Sutton-Chen Potential

In this work, the effect of pressure on the crystallization (Tc) and glass transition (Tg) temperatures of a modelledPdSi liquid alloy was investigated for different cooling rates by using Quantum Sutton Chen(K-SC) potentialwhich is used to determine the interactions between atoms. It was determined that at the cooling rates of 2,5x1011K/s and 2,5x1012 K/s the alloy system in liquid phase transformed into crystal and amorphous phase, respectively.The glass transition temperature was defined by the Wendt-Abraham parameter and radial distribution function(RDF) peaks. It was concluded that the increment of pressure led to an increase in the crystallization and glasstransition temperatures and the ratio of Tg/Tm resulted in an improvement of the glass forming ability.

___

  • [1] Qi L., Zhang H., Hu Z. 2004. Molecular dynamic simulation of glass formation in binary liquid metal: Cu–Ag using EAM. Intermetallics, 12 (10-11): 1191-1195.
  • [2] Ozgen S., Duruk E. 2004. Molecular dynamics simulation of solidification kinetics of aluminium using Sutton–Chen version of EAM. Materials Letters, 58 (6): 1071-1075.
  • [3] Wang W.-H., Dong C., Shek C. 2004. Bulk metallic glasses. Materials Science and Engineering: R: Reports, 44 (2-3): 45-89.
  • [4] Cong H.-R., Bian X.-F., Zhang J.-X., Li H. 2002. Structure properties of Cu-Ni alloys at the rapid cooling rate using embedded-atom method, Materials Science and Engineering: A, 326 (2): 343- 347.
  • [5] Qi L., Zhang H., Hu Z., Liaw P. 2004. Molecular dynamic simulation studies of glass formation and atomic-level structures in Pd–Ni alloy. Physics Letters A, 327 (5-6): 506-511.
  • [6] Schroers J., Pham Q., Peker A., Paton N., Curtis R.V. 2007. Blow molding of bulk metallic glass. Scripta Materialia, 57 (4): 341-344.
  • [7] Laws K., Gun B., Ferry M. 2006. Effect of die-casting parameters on the production of high quality bulk metallic glass samples. Materials Science and Engineering: A, 425 (1-2): 114-120.
  • [8] Busch R., Kim Y., Johnson W. 1995. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5 alloy. Journal of applied physics, 77 (8): 4039-4043.
  • [9] Luzzi D., Meshii M. 1986. Criteria for the amorphisation of intermetallic compounds under electron irradiation. Scripta metallurgica, 20 (6): 943-948.
  • [10] Etemadi R. 2014. Effect of processing parameters and matrix shrinkage on porosity formation during synthesis of metal matrix composites with dual-scale fiber reinforcements using pressure infiltration process. University of Wisconsin Uw milwaukee, Master of Science in Engineering, Master, ABD.
  • [11] Tuli M., Strutt P.R. 1978. Claitor's Publishing Devision, B. Rouge Louisiana: 113.
  • [12] Yan M., Sun J.F., Shen J. 2004. Isothermal annealing induced embrittlement of Zr41. 25Ti13. 75Ni10Cu12. 5Be22. 5 bulk metallic glass. Journal of alloys and compounds, 381 (1-2): 86-90.
  • [13] Xi X.K. 2005. Preparation of Mg-based bulk metallic glasses and their fracture behaviors. Institute of Physics, CAS.
  • [14] Faruq M., Villesuzanne A., Shao G. 2018. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties. Journal of Non-Crystalline Solids, 487: 72-86.
  • [15] Hui L., Pederiva F. 2004. Structural study of local order in quenched lead under high pressures. Chemical physics, 304 (3): 261-271.
  • [16] Wang Z., Wang R., Wang W. 2006. Elastic properties of Cu60Zr20Hf10Ti10 bulk metallic glass under high pressure. Materials Letters, 60 (6): 831-833.
  • [17] Shimojo F., Hoshino K., Zempo Y. 2002. Intermediate-range order in liquid and amorphous As2S3 by ab initio molecular-dynamics simulations. Journal of non-crystalline solids, 312: : 388- 391.
  • [18] Çağın T., Dereli G., Uludoğan M., Tomak M. 1999. Thermal and mechanical properties of some fcc transition metals. Physical Review B, 59 (5): 3468.
  • [19] Zhang X.-J., Chen C.-L. 2012. Phonon dispersion in the Fcc metals Ca, Sr and Yb. Journal of Low Temperature Physics, 169 (1-2): 40-50.
  • [20] Tolpin K., Bachurin V., Yurasova V. 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 273: 76-79.
  • [21] Louail L., Maouche D., Roumili A., Hachemi A. 2005. Pressure effect on elastic constants of some transition metals. Materials chemistry and physics, 91 (1): 17-20.
  • [22] Pelaz L., Marqués L. A., Aboy M., López P., Barbolla J. 2005. Atomistic modeling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Computational materials science, 33 (1-3): 92-105.
  • [23] Shao Y., Clapp P.C., Rifkin J. 1996. Molecular dynamics simulation of martensitic transformations in NiAI. Metallurgical and Materials Transactions A, 27 (6): 1477-1489.
  • [24] Daw M. S., Hatcher R. 1985. Application of the embedded atom method to phonons in transition metals. Solid state communications, 56 (8): 697-699.
  • [25] Voter A.F., Chen S.P. 1986. Accurate interatomic potentials for Ni, Al and Ni3Al. MRS Online Proceedings Library Archive, 82: 175.
  • [26] Finnis M., Sinclair J. 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine A, 50 (1): 45-55.
  • [27] Sutton A., Chen J. 1990. Long-range finnis–sinclair potentials. Philosophical Magazine Letters, 61 (3): 139-146.
  • [28] Grujicic M., Dang P. 1995. Computer simulation of martensitic transformation in Fe-Ni facecentered cubic alloys. Materials Science and Engineering: A, 201 (1-2): 194-20.
  • [29] Gui J., Cui Y., Xu S., Wang Q., Ye Y., Xiang M., Wang R. 1994. Embedded-atom method study of the effect of the order degree on the lattice parameters of Cu-based shape memory alloys. Journal of Physics: Condensed Matter, 6 (24): 4601.
  • [30] Caprion D., Schober H. 2003. Computer simulation of liquid and amorphous selenium. Journal of non-crystalline solids, 326: 369-373.
  • [31] Parrinello M., Rahman A. 1980. Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45 (14): 1196.
  • [32] Parrinello M., Rahman A. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics, 52 (12): 7182-7190.
  • [33] Rigby M., Maitland G.C., Smith E.B., Wakeham W.A. 1986. The forces between molecules,T144, Oxford University Press, Clarendon Press.
  • [34] Baxi H., Massalski T. 1991. The pdsi (palladiumsilicon) system. Journal of phase equilibria, 12 (3): 349-356.
  • [35] Wang L., Peng C., Wang Y., Zhang Y. 2006. Relating nucleation to dynamical and structural heterogeneity in supercooled liquid metal. Physics Letters A, 350 (1-2): 69-74.
  • [36] Shimono M., Onodera H. 2001. Molecular dynamics study on formation and crystallization of Ti–Al amorphous alloys. Materials Science and Engineering: A, 304: 515-519.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü