Kolemanit Minerali ile Katkılanmış Lityum Borat Camların Gama-ışını Zırh Özellikleri

Bu çalışmada, (Li2B4O7) (100-x) - (Kolemanit) x cam sistemler (burada x = 10, 20, 30 ve % 40 ağırlık) erime söndürme tekniği ile üretildi. Üretilen camların, kütle soğurma katsayısı (µ? ), etkin atom numarası (Zeff), elektron yoğunluğu (Nel), yarı değer kalınlıkları (HVL) ve ortalama serbest yol (MFP) gibi radyasyon zırh parametreleri 81, 276, 302, 356 ve 383 keV gama enerjilerinde deneysel olarak Hp-Ge dedektörü ile ölçüldü. Ayrıca, camların bu radyasyon zırh parametrelerinin 1 keV-105 MeV enerji aralığında teorik hesaplamaları için WinXCom programı kullanıldı. Deneysel ve teorik sonuçların birbirleri ile iyi uyum içinde olduğu görüldü. Elde edilen sonuçlar, cam sistemindeki kolemanit mineralinin yüzdesi arttığında, µ? , Zeff ve Nel değerlerinin de arttığını ortaya koydu. Ayrıca, bunun aksine, kolemanit yüzdesinin artmasıyla HVL and MFP değerlerinin azaldığı gözlendi. Spesifik olarak, incelenen camlar arasında yüzde 40 kolemanit mineral içeriğine sahip lityum borat cam en yüksek µ? , Zeff ve Nel değerine sahip, bununla birlikte en düşük HVL ve MFP'ye sahiptir. Bu nedenle, bu çalışmada, incelenen cam sistemleri arasında %40 kolemanit minerali içeren lityum borat cam gama radyasyonu zırh özellikleri için en iyi sonucu vermiştir.

Gamma-ray Shielding Properties of Lithium Borate Glass Doped with Colemanit Mineral

In this study, (Li2B4O7)(100-x)-(Colemanite)x glass systems (where x=10, 20, 30 and 40 wt %) were fabricated viamelt quenching technique. The radiation shielding parameters of produced glasses such as mass attenuationcoefficient (µ?), effective atomic number (Zeff), electron density (Nel), half value layer (HVL) and mean free path(MFP) were measured experimentally for 81, 276, 302, 356, and 383 keV gamma ray energies with Hp-Gedetector. Also, WinXCom software was employed for theoretical calculation above radiation shielding parametersof glasses for 1 keV to 105 MeV energy region. It was seen that the experimental and theoretical results are goodagreement with each other. The obtained results revealed that when percentage of colemanite mineral has beenincreased in the glass system, µ?, Zeff and Nel values increase. Furthermore, it was observed that the values ofHVL and MFP, in contrary, decreases with increasing colemanite mineral percent. In specific, among theinvestigated glasses, lithium borate glass with 40 percentage colemanite mineral has the highest value of µ?, Zeffand Nel, however, it has the lowest HVL and MFP. Therefore, lithium borate glass with 40 percentage colemanitemineral has given the best results for gamma radiation shielding purpose among the investigated glass systems inthis work.

___

  • [1] Chanthima N., Kaewkhao J. 2013. Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Annals of Nuclear energy, 55: 23-28.
  • [2] Kaur P., Singh K.J., Thakur S., Singh, P., Bajwa B.S. 2019 Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 206: 367-377.
  • [3] Singh V.P., Badiger N.M., Chanthima N., Kaewkhao J. 2014. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiation Physics and Chemistry, 98: 14-21.
  • [4] Akkurt I., Basyigit C., Kilincarslan S., Mavi, B., Akkurt, A. 2006. Radiation shielding of concretes containing different aggregates. Cement and Concrete Composites, 28: 153-157.
  • [5] Akkurt I., Akyıldırım H., Mavi B., Kilincarslan S., Basyigit, C. 2010. Radiation shielding of concrete containing zeolite. Radiation Measurements, 45: 827-830.
  • [6] Kharita M.H., Yousef S., Al Nassar M. 2011. Review on the addition of boron compounds to radiation shielding concrete. Progress in Nuclear Energy, 53: 207-211.
  • [7] Bashter I.I., Abdo A.E.S., Abdel-Azim M.S. 1997. Magnetite ores with steel or basalt for concrete radiation shielding. Japanese journal of applied physics, 36: 3692.
  • [8] Singh V.P., Badiger N.M. 2014. Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy, 64: 301-310.
  • [9] Singh V.P., Medhat M.E., Shirmardi S.P. 2015. Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results, Radiation Physics and Chemistry, 106: 255-260.
  • [10] Kaur S., Kaur A., Singh P.S., Singh T. 2016. Scope of Pb-Sn binary alloys as gamma rays shielding material. Progress in Nuclear Energy, 93: 277-286.
  • [11] Harish V., Nagaiah N., Prabhu T.N., Varughese K.T. 2009. Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications. Journal of applied polymer science, 112: 1503-1508.
  • [12] Mann K.S., Rani A., Heer M.S. 2015. Shielding behaviors of some polymer and plastic materials for gamma-rays. Radiation Physics and Chemistry, 106: 247-254.
  • [13] Kaewjaeng S., Kaewkhao J., Limsuwan P., Maghanemi U. 2012. Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO-Na2O glasses system. Procedia Engineering, 32: 1080-1086.
  • [14] Ruengsri S. 2014. Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Science and Technology of Nuclear Installations, 5: 2014.
  • [15] Manonara S.R., Hanagodimath S.M., Gerward L., Mittal K.C. 2011. Exposure buildup factors for heavy metal oxide glass: a radiation shield. Journal of the Korean Physical Society, 59: 2039- 2042.
  • [16] Ersundu A.E., Büyükyıldız M., Ersundu M.Ç., Şakar E., Kurudirek M. 2018. The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Progress in Nuclear Energy, 104: 280-287.
  • [17] Sayyed M.I., Lakshminarayana G., Kityk I.V., Mahdi M.A. 2017. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications. Radiation Physics and Chemistry, 139: 33-39.
  • [18] Sayyed M.I., Lakshminarayana G. 2018. Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications. Journal of Non-Crystalline Solids, 487: 53-59.
  • [19] Singh K., Singh H., Sharma V., Nathuram R., Khanna A., Kumar R., Sahota H.S. 2002. Gammaray attenuation coefficients in bismuth borate glasses. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194: 1-6.
  • [20] Danilyuk P.S., Puga P.P., Krasilinets V.N., Gomonai A.I., Puga G.D., Rizak V.M., Turok I.I. 2018. X-ray Fluorescence of Eu 3+ Ions in Glassy and Polycrystalline Lithium Tetraborate. Glass Physics and Chemistry, 44 (1): 1-6.
  • [21] Kaplan M.F. 1989. Concrete Radiation Shielding. John Wiley and Sons Inc, 99s New York.
  • [22] Yorgun N.Y., Kavaz E., Oto B., Akdemir F. 2018. Evaluation of gamma-ray attenuation properties of lithium borate glasses doped with barite, limonite and serpentine. Radiochimica Acta, 106 (10): 865-872.
  • [23] Gerward L., Guilbert N., Jensen K.B., Leving H. 2004. WinXCom–a program for calculating Xray attenuation coefficients. Radiation physics and chemistry, 71: 653-654.
  • [24] Büyükyıldız M. 2016. Effective atomic numbers and electron densities for some lanthanide oxide compounds using direct method in the energy region of 1 keV-20 MeV. Bitlis Eren Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6 (1): 7-12.
  • [25] Kavaz E. 2018. Investigation on Photon Interaction Properties of Some Polymers Used in Production of Hydrogels. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 13 (2): 97-107.
  • [26] Bircan H., Manisa K., Atan A.S., Erdoğan M. 2017. Gama ve X-Işını Radyasyonu Yarı Değer Kalınlık Değerinin Hesaplanması için Yeni Bir Denklem. Süleyman Demirel Universitesi Fen Bilimleri Enstitüsü Dergisi, 12 (1): 23-29.
  • [27] Sayyed M.I., Kaky K.M., Gaikwad D.K., Agar O., Gawai U.P., Baki S.O. 2019. Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). Journal of Non-Crystalline Solids, 507: 30-37.
  • [28] Dikmen Z., Orhun Ö. 2013. Manyetik Modifiye Edilmiş Sentetik ve Doğal Zeolitlerin Hazırlanması Ve Bazı Fiziksel Özelliklerinin Kıyaslanması. Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering, 14 (1): 75-90.
  • [29] Sayyed M.I., Akman F., Kaçal M.R., Kumar A. 2019. Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region. Nuclear Engineering and Technology, 51: 860-866.
  • [30] Issa S.A., Sayyed M.I., Zaid M.H.M., Matori K.A. 2018. Photon parameters for gamma-rays sensing properties of some oxide of lanthanides. Results in Physics, 9: 206-210.
  • [31] Hine G.J. 1952. The effective atomic numbers of materials for various gamma ray processes. Physical Review, 85: 725.