Myrtus communis L. (Mersin) Yaprak Ekstraktının Genoprotektif Etkisinin Somatik Mutasyon ve Rekombinasyon Testi (SMART) ile Değerlendirilmesi

Bu çalışmada Myrtus communis L. (mersin) yaprak ekstraktının genoprotektif etkisi somatik mutasyon verekombinasyon testi (SMART) ile incelendi. Yüksek genotoksik etkiye sahip kemoterapötik bir ajan olandoksorubisin (DXR) pozitif kontrol olarak kullanıldı. Test maddeleri flare (flr3) ve çoklu kanat kılı (mwh) mutantişaret genlerini taşıyan üç günlük (72±4 saat) transheterozigot Drosophila melanogaster larvalarına uygulandı.Mersin yaprak ekstraktı, genotoksik etkisini değerlendirmek için tek başına (1,5 ve 10 mg/ml), antigenotoksiketkisini değerlendirmek için doksorubisin (0,125 mg/ml) ile uygulandı. İnhibisyon yüzdeleri 1, 5 ve 10 mg/mldozlarında sırasıyla %91,70, %97,51 ve %98,34 olarak hesaplandı. Bu çalışmadan elde edilen sonuçlara göremersin yaprak ekstraktı test edilen tüm dozlarda doksorubisin kaynaklı mutant klon oluşumunu inhibe ederekantigenotoksik etki gösterdi.

Assessing the Genoprotective Effect of Myrtus communis L. (Myrtle) Leaf Extract by Somatic Mutation and Recombination Test (SMART)

In this study genoprotective effect of Myrtus communis L. (myrtle) leaf extract was investigated with somatic mutation and recombination test (SMART). Doxorubicin (DXR), a chemotherapeutic agent with high genotoxic effect, was used as a positive control. The test substances were administered to three-day-old (72±4 hours) transheterozygous Drosophila melanogaster larvae carrying genetic markers flare (flr3 ) and multiple wing hair (mwh). Myrtle leaf extract was applied alone (1,5 and 10 mg/ml) to evaluate its genotoxic effect and in combination with doxorubicin (0,125 mg/ml) to evaluate its antigenotoxic effect. Inhibition percentages were calculated as 91,70 %, 97,51 % and 98,34 % at 1, 5 and 10 mg/ml doses, respectively. The results obtained from this study revealed that myrtle leaf extract showed antigenotoxic effect by inhibiting doxorubicin-induced mutant clone formation at all doses tested.

___

  • [1] Liska D.J. 1998. The Detoxification Enzyme Systems Alternative Medicine Review, 33 (3): 187-198.
  • [2] Bacanlı M., Başaran A.A., Başaran N. 2015. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food and Chemical Toxicology, 81: 160-170.
  • [3] Goswami P., Banerjee R., Mukherjee A. 2019. Potential antigenotoxicity assessment of Ziziphus jujuba fruit, Heliyon, 5 (5): e01768.
  • [4] Lozano-Baena M.D., Tasset I., Obregón-Cano S., de Haro-Bailon A., Muñoz-Serrano A., Alonso-Moraga Á. 2015. Antigenotoxicity and tumor growing inhibition by leafy Brassica carinata and sinigrin. Molecules, 20 (9): 15748-15765.
  • [5] Munari C.C., de Oliveira P.F., Leandro L.F., Pimenta L.M., Ferreira N.H., da Costa J de C., Bastos J.K., Tavares D.C. 2014. In vivo assessment of genotoxic, antigenotoxic and anticarcinogenic activities of Solanum lycocarpum fruits glycoalkaloidic extract. PLoS One, 9 (11): e111999.
  • [6] Qiu Z., Tang M., Deng G., Yang H., Zhang X., Huang S., Wu L. 2014. Antioxidant and antigenotoxic activities of ethanol extracts from Rhus chinensis Mill leaves. Food Science and Biotechnology, 23 (4): 1213-1221.
  • [7] Aleksic V., Knezevic P. 2014. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiological Research, 169 (4): 240-254.
  • [8] Alipour G., Dashti S., Hosseinzadeh H. 2014. Review of Pharmacological Effects of Myrtus communis L. and its Active Constituents. Phytotherapy Research, 28 (8): 1125-1136.
  • [9] Bouzabata A., Cabral C., Gonçalves M.J., Cruz M.T., Bighelli A., Cavaleiro C., Casanova J., Tomi F., Salgueiro L. 2015. Myrtus communis L. as source of a bioactive and safe essential oil. Food and Chemical Toxicology, 75: 166-172.
  • [10] Aidi Wannes W., Mhamdi B., Sriti J., Ben Jemia M., Ouchikh O., Hamdaoui G., Kchouk M.E., Marzouk B. 2010. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food and Chemical Toxicology, 48 (5): 1362-1370.
  • [11] Cherrat L., Espina L., Bakkali M., García-Gonzalo D., Pagán R., Laglaoui A. 2014. Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. Journal of the Science of Food and Agriculture, 94 (6): 1197- 1204.
  • [12] Malla S., Prasad Niraula N., Singh B., Liou K., Sohng J.K. 2010. Limitations in doxorubicin production from Streptomyces peucetius. Microbiological Research, 165 (5): 427-435.
  • [13] Meredith A.M., Dass C.R. 2016. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. Journal of Pharmacy and Pharmacology, 68 (6): 729-741.
  • [14] Saturnino R.S., Machado N.M., Lopes J.C., Nepomuceno J.C. 2018. Assessment of the mutagenic, recombinogenic, and carcinogenic potential of amphotericin B in somatic cells of Drosophila melanogaster. Drug and chemical toxicology, 41 (1): 9-15.
  • [15] Orsolin P.C., Silva-Oliveira R.G., Nepomuceno J.C. 2016. Modulating effect of simvastatin on the DNA damage induced by doxorubicin in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology, 90: 10-17.
  • [16] Graf U., Würgler F.E., Katz A.J., Frei H., Juan H., Hall J.V. 1984. Somatic Mutation and Recombination Test in Drosophila melanogaster. Enviromental Mutagenesis, 6 (2): 153-188.
  • [17] Graf U., Abraham S.K., Guzmán-Rincón J., Würgler F.E. 1998. Antigenotoxicity studies in Drosophila melanogaster. Mutation Research/Genetic Toxicology, 402 (1-2): 203-209.
  • [18] Mollet P., Würgler F.E. 1974. Detection of somatic recombination and mutation in Drosophila. A method for testing genetic activity of chemical compounds,. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 25 (3): 421-424.
  • [19] Graf U., Frei H., Kagi A., Katz A.J., Würgler F.E. 1989. Thirty compounds tested in the Drosophila wing spot test. Mutation Research/Genetic Toxicology, 222 (4): 359-373.
  • [20] Kastenbaum M.A., Bowman, K.O. 1970. Tables for determining the statistical significance of mutation frequencies. Mutation Research, 9 (5): 527-549.
  • [21] Frei H., Würgler, F.E. 1988. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result. Mutation Research/Environmental Mutagenesis and Related Subjects, 203 (4): 297-308.
  • [22] Abraham S.K. 1994. Antigenotoxicity of coffee in the Drosophila assay for somatic mutation and recombination. Mutagenesis, 9 (4): 383-386.
  • [23] Xue H., Ren W., Denkinger M., Schlotzer E., Wischmeyer P.E. 2015. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids. Journal of Parenteral and Enteral Nutrition, 40 (1): 52-66.
  • [24] Asensio-López M.C., Soler F, Sánchez-Más J, Pascual-Figal D, Fernández-Belda F, Lax A. 2016. Early oxidative damage induced by doxorubicin: source of production, protection by GKT137831 and effect on Ca2+ transporters in HL-1 cardiomyocytes, Archives of Biochemistry and Biophysics, 594: 26-36.
  • [25] Injac R., Perse M., Cerne M., Potocnik N., Radic N., Govedarica B., Djordjevic A., Cerar A., Strukelj B. 2009. Protective effects of fullerenol C 60 (OH) 24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials, 30 (6): 1184-1196.
  • [26] Yilmaz S., Atessahin A., Sahna E., Karahan I., Ozer S. 2006. Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology, 218 (2): 164-171.
  • [27] Khalil W.K., Abidli N., Ghaly I.S., Hassanane M.M., Sharafeldin E.A. 2015. Myrtus Species Prevents Reproductive Toxicity Induced By Doxorubicin In Male Mice. Asian Journal of Pharmaceutical and Clinical Research, 8 (3): 169-175.
  • [28] Gao J., Chen T., Zhao D., Zheng J., Liu Z. 2016. Ginkgolide B exerts cardioprotective properties against doxorubicin-induced cardiotoxicity by regulating reactive oxygen species, Akt and calcium signaling pathways in vitro and in vivo. PloS one, 11 (12): e0168219.
  • [29] Mohebbati R., Shafei M.N., Soukhtanloo M., Roshan N.M., Rad A.K., Anaeigoudari A., Hosseinian S., Karimi S., Beheshti F. 2016. Adriamycin-induced oxidative stress is prevented by mixed hydro-alcoholic extract of Nigella sativa and Curcuma longa in rat kidney. Avicenna Journal of Phytomedicine, 6 (1): 86-94.
  • [30] Khazdair M.R., Mohebbati R., Karimi S., Abbasnezhad A., Haghshenas M. 2016. The protective effects of Curcuma longa extract on oxidative stress markers in the liver induced by Adriamycin in rat. Physiology and Pharmacology, 20 (1): 31-37.
  • [31] Kuzu M., Yıldırım S., Kandemir F.M., Küçükler S., Çağlayan C., Türk E., Dörtbudak M.B. 2019. Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats. Chemicobiological interactions, 308: 89-100.
  • [32] Amensour M., Sendra E., Abrini J., Pérez-Alvarez J.A., FernándezLópez J. 2010. Antioxidant activity and total phenolic compounds of myrtle extracts. CyTA-Journal of Food, 8 (2): 95-101.
  • [33] Babou L., Hadidi L., Grosso C., Zaidi F., Valentão P., Andrade P. B. 2016. Study of phenolic composition and antioxidant activity of myrtle leaves and fruits as a function of maturation. European Food Research and Technology, 242 (9): 1447-1457.
  • [34] Díaz-de-Cerio E., Arráez-Román D., Segura-Carretero A., Ferranti P., Nicoletti R., Perrotta G. M., Gómez-Caravaca A.M. 2018. Establishment of pressurized-liquid extraction by response surface methodology approach coupled to HPLC-DAD-TOF-MS for the determination of phenolic compounds of myrtle leaves. Analytical and bioanalytical chemistry, 410 (15): 3547- 3557.
  • [35] Mimica-Dukić N., Bugarin D., Grbović S., Mitić-Ćulafić D.,Vuković-Gačić B., Orčić D., Jovin E., Couladis M. 2010. Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents. Molecules, 15: 2759-2770.
  • [36] Hayder N., Bouhlel I., Skandrani I., Kadri M., Steiman R., Guiraud P., Mariotte A.M., Ghedira K., Dijoux-Franca M.G., Chekir-Ghedira L. 2008. In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from Myrtus communis: modulation of expression of genes involved in cell defence system using cDNA microarray. Toxicology In Vitro, 22 (3): 567-581.
  • [37] Rosa A., Deiana M., Casu V., Corona G., Appendino G., Bianchi F., Ballero M., Dessì M.A. 2003. Antioxidant activity of oligomeric acylphloroglucinols from Myrtus communis L. Free Radical Research, 37 (9): 1013-1019.
  • [38] Rosa A., Melis M.P., Deiana M., Atzeri A., Appendino G., Corona G., Incani A., Loru D., Dessì M.A. 2008. Protective effect of the oligomeric acylphloroglucinols from Myrtus communis on cholesterol and human low density lipoprotein oxidation. Chemistry and Physics of Lipids, 155 (1): 16-23.
  • [39] Ines S., Ines B., Wissem B., Mohamed B.S., Nawel H., Dijoux-Franca M.G., Kamel G., Leila C.G. 2012. In vitro antioxidant and antigenotoxic potentials of 3,5-O-di-galloylquinic acid extracted from Myrtus communis leaves and modulation of cell gene expression by H2O2. Journal of Applied Toxicology, 32 (5): 333-341.
  • [40] Chen A.Y., Chen Y.C. 2013. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention, Food Chemistry, 138 (4): 2099-2107.
  • [41] Öz S., Çakır Arıca Ş. 2016. Evaluation of antigenotoxic effect of Myrtus communis L. (mytle) fruit extract. International Conference on Natural Science and Engineering (ICNASE’16), pp 2474-2481, 19-20 March, Kilis.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü