Betonarme Yapılarda Kullanılan Malzeme Modellerinin Karşılaştırılması

Malzeme modelleri yapıların sismik analizlerinde önemli rol oynamaktadır. Literatürde, betonarme yapılardakullanılan malzemelerin gerilme-şekil değiştirme ilişkisini tanımlamak için çeşitli malzeme modelleribulunmaktadır. Beton ve çelik gibi iki farklı yapı malzemesinin bir arada kullanılması ile elde edilen betonarmeyapılarda malzeme modelleri ayrı bir öneme sahiptir. Hem beton hem de çelik için kullanılan farklı malzememodellerinin karşılıklı etkileşimi çalışmanın konusunu oluşturmaktadır. Çalışmanın amacı betonarme yapılardakullanılan farklı malzeme modellerinin birbirleri ile uyumlu olup olmadığını kontrol etmektir. Bu çalışmada dörderfarklı beton ve çelik malzeme modeli dikkate alınarak seçilen iki katlı betonarme bir yapı için hesaplamalaryapılmıştır. Her bir malzeme modeli için X ve Y doğrultularında taban kesme kuvveti – deplasman eğrileri eldeedilmiştir. Çalışmada dikkate alınan malzeme modelleri hakkında bilgiler verilmiştir. Farklı malzeme modelleriarasında bir uyum olduğu gözlemlenmiştir. Bu malzeme modellerinin birlikte kullanılabilirliğini ortayakoymuştur.

Comparison of Material Models Used in Reinforced Concrete Structures

The material model takes a significant role in the seismic analysis of structures. There are several material models in the literature to define the stress-strain relationship of material that used in reinforced concrete buildings. The reinforced concrete has a particular importance in terms of its material models as it is obtained with the use of two different construction materials together such as concrete and steel. The mutual interaction of the different material models for both of concrete and steel comprises of the study's subject. The goal of study is to control whether the material models which are used in the reinforced-concrete structures are in compatible with each other or not. In this study, calculations are made for a two-story structure, taking four different concrete and steel models into account. For each model, displacement amount for X and Y axes and base shear force-displacement graphs are drawn. The obtained values are compared and suggestions are made.

___

  • [1] Ersoy U., Özcebe G. 2007. Betonarme. Evrim Yayınevi, 816s, Türkiye.
  • [2] Celep Z. 2014. Betonarme Taşıyıcı Sistemlerde Doğrusal Olmayan Davranış ve Çözümleme. Beta Dağıtım, 236s. İstanbul.
  • [3] Işık E., Özdemir M. 2017. Performance Based Assessment of Steel Frame Structures by Different Material Models. International Journal of Steel Structures, 17 (3): 1021-1031.
  • [4] Mander JB., Priestley MJN., Park R. 1998. Theoretical Stress-strain Model for Confined Concrete. Journal of Structural Engineerings, 114 (8): 1804-1825.
  • [5] İlki A., Fukuta T., Özdemir P. 2003. Sargılı Beton Davranışı ve Üç Doğrudan Oluşan Gerilme – Şekil Değiştirme Modeli. IMO Teknik Dergi, 190: 2853-2871.
  • [6] Chang GA. Mander JB. 1994. Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part 1 –Evaluation of Seismic Capacity. NCEER Technical Report No. NCEER-94- 0006, State University of New York, Buffalo, N.Y.
  • [7] Kappos A., Konstantinidis D. 1999. Statistical Analysis of Confined High Strength Concrete Materials and Structures, 32: 734-748.
  • [8] Antoniou S., Pinho R. 2003. Seismostruct–Seismic Analysis Program by Seismosoft. Technical Manual and User Manual.
  • [9] Menegotto M., Pinto PE. 1973. Method of Analysis for Cyclically Loaded RC. Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Combined Normal Force and Bending. Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland, 15-22.
  • [10] Monti G., Nuti C. 1992. Nonlinear Cyclic Behaviour of Reinforcing Bars Including Buckling. Journal of Structural Engineerings, 118 (12): 3268-3284.
  • [11] Dodd L., Restrepo-Posada J. 1995. Model for Predicting Cyclic Behavior of Reinforcing Steel Journal of Structural Engineerings, 121 (3): 433–445.
  • [12] Işık E., Özdemir M., 2017. Consistency of Concrete Material Models that Used for RC Buildings. Scientific Herald of the Voronezh State University of Architecture & Civil Engineering, 36 (4): 92-105.
  • [13] Karaşin İB., Işık E., Karaşin A., Özdemir M. 2017. Consistency of Steel Material Models that Used in the Design of RC Buildings, International Conference on Multidisciplinary, Science, Engineering and Technology (IMESET’17 Bitlis), Bitlis.
  • [14] Wu H. 2007. Constitutive Model of Concrete Confined by Advanced Fiber Composite Materials and Applications in Seismic Retrofitting, ProQuest.
  • [15] Turkish Earthquake Code, 2007. Turkish Earthquake Code-Specification for Structures to be Built in Disaster Areas, Turkey.
  • [16] Özmen HB., İnel M. 2011. Betonarme Yapılarda Malzeme Dayanımı ve Detaylandırma Özelliklerinin Sismik Hasar Üzerine Etkisinin Değerlendirilmesi. 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Türkiye.
  • [17] Rediiar MKM. 2009. Stress-strain Model of Unconfined and Confined Concrete and Stress-block Parameters Diss. Texas A&M University.
  • [18] Concrete CM, 2015. Chang-Mander Concrete Model. http://opensees.berkeley.edu/wiki/index.php/ConcreteCM__Complete_Concrete_Model_by_Ch ang_and_Mander_(1994). (Erişim tarihi: 29.05.2019)
  • [19] Nagashima T., Sugano S., Kimura H., Ichikawa A. 1992. Monotonic Axial Compression Test on Ultra-high-strength Concrete Tied Columns. In 10th World Conference on EarthquakeEngineering, 5:2983-2988.
  • [20] Sheikh SA., Uzumeri SM. 1982.Analytical Model for Concrete Confinement in Tied Columns. Journal of Structural Divisio, 108 (12): 2703-2722.
  • [21] Yassin MHM. 1994. Nonlinear Analysis of Prestressed Concrete Structures under Monotonic and Cyclic Loads. PhD Thesis, University of California, Berkeley, USA.
  • [22] Filippou FC., Popov EP., Bertero VV. 1983. Effects of Bond Deterioration on Hysteretic Behaviour of Reinforced Concrete Joints. Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley.
  • [23] Fragiadakis M., Pinho R., Antoniou S. 2008. Modelling Inelastic Buckling of Reinforcing Bars under Earthquake Loading in Progress in Computational Dynamics and Earthquake Engineering. Eds. M. Papadrakakis, D.C. Charmpis, N.D. Lagarosand Y. Tsompanakis, A.A. BalkemaPublishers – Taylor & Francis, TheNetherlands.
  • [24] Prota A., Cicco F., Cosenza E. 2009. Cyclic Behaviour of Smooth Steel Reinforcing Bars: Experimental Analysis and Modelling Issues. Journal of Earthquake Engineering, 13 (4): 500- 519.
  • [25] Bosco M., Ferrara E., Ghersi A., Marino E., Rossi PP. 2014. Improvement of the Model Proposed by Menegotto and Pinto for Steel. 2nd European Conference on Earthquake Engineering and Seismology.
  • [26] Abdelnaby AE., Elnashai AS. 2015. Numerical Modeling and Analysis of RC Frames Subjected to Multiple Earthquakes. Earthquakes and Structures, 9 (5): 957-981.
  • [27] Monti G., Nuti C., Santini S. 1996. CYRUS – Cyclic Response of Upgraded Sections Report No: 96-2, University of Chieti, Italy.
  • [28] Kim SH. 2015. Cyclic Uniaxial Constitutive Model for Steel Reinforcement. Doctoral Dissertation, Virginia Tech.
  • [29] Kim SH., Koutromanos I. 2016. Constitutive Model for Reinforcing Steel under Cyclic Loading. Journal of Structural Engineerings, 142 (12): 04016133.
  • [30] Ademovic N., Hrasnica M., Oliveira DV. 2013.Pushover Analysis and Failure Pattern of a Typical Masonry Residential Building in Bosnia and Herzegovina. Engineering Structures, 50: 13-29.
  • [31] Aydınoğlu MN. 2007. A Response Spectrum-based Nonlinear AssessmentTool for Practice: Incremental Response Spectrum Analysis (IRSA). ISET Journal of Earthquake Technology, 44 (1):169-192.
  • [32] Kutanis M., Boru OE. 2014. The Need for Upgrading the Seismic Performance Objectives. Earthquakes and Structures, 7 (4): 401-414.
  • [33] Foti D. 2015. A New Experimental Approach to the Pushover Analysis of Masonry Buildings. Computers and Structures, 147: 165-171.
  • [34] Isik E., Kutanis M. 2015. Performance Based Assessment for Existing Residential Buildings in Lake Van Basin and Seismicity of the Region. Earthquakes and Structures, 9 (4): 893-910.
  • [35] Krawinkler H., Seneviratna GDPK. 1998. Prosand Cons of a Pushover Analysis of Seismic Performance Evaluation. Engineering Structures, 20 (4): 452-464.
  • [36] Estêvão JM., Oliveira CS. 2015. A New Analysis Method for Structural Failure Evaluation. Engineering Failure Analysis, 56: 573-584.
  • [37] Karakaš N., Kalman Šipoš T., Hadzima-Nyarko M. 2018. Application of Different Seismic Analyses to RC Structures. E-GFOS, 9 (17): 39-51.
  • [38] Işık E., Özdemir M., Karaşin İB. 2018. Performance Analysis of Steel Structures with A3 Irregularities. International Journal of Steel Structures, 18 (3): 1083-1094.
  • [39] Inel M., Meral E. 2016. Seismic Performance of RC Buildings Subjected to Past Earthquakes in Turkey. Earthquakes and Structures, 11 (3): 483-503.
  • [40] SeismoStruct v6.5 2014 A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. Seismosoft.