Gamma-ray Shielding Properties of Lithium Borate Glass Doped with Colemanit Mineral

Bu çalışmada, katkısız ve farklı oranlarda (10,20,30 ve 40%) kolemanit minerali katkılı lityum borat camlar üretildi. Bu camların, kütle soğurma katsayıları (), etkin atom numaraları (Zeff),  elektron yoğunlukları (Nel) ve yarı değer kalınlıkları (HVL) gibi nükleer özellikleri 81,276,302,356 ve 383 keV gamma enerjilerinde deneysel olarak elde edildi. Ayrıca, camların bu nükleer parametreleri 1 keV-105 MeV enerji aralığında WinXCom program ile teorik olarak hesaplandı. Elde edilen verilerden, cam örneklerinde   değerlerinin, artan gama enerji değerleri ile, farklı enerji bölgelerinde çeşitli etkileşim mekanizmalarına bağlı olarak, azalmakta olduğu gözlenmiştir. İncelenen örneklerde,   %40 kolemanit minerali içeren lityum borat cam örneğinin kütle soğurma katsayısı ve etkin atom numarası en yüksek değere sahip olduğu bulunmuştur. Bunu yani sıra, ayni örnek en düşük yarı değer kalınlığına sahip olduğu gözlenmiştir. Bu nedenle, incelenen cam sistemleri içinde %40 kolemanit içeren lityum borat cam hem doğal hem de yapay radyasyon için en iyi koruyucu malzeme olarak değerlendirilebilir.

___

  • 1. Chanthima N., Kaewkhao J. 2013. Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV, Annals of Nuclear energy, 55: 23-28.
  • 2. Kaewjaeng S., Kaewkhao J., Limsuwan P., Maghanemi U. 2012. Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO-Na2O glasses system, Procedia Engineering, 32: 1080-1086.
  • 3.El-Bashir B. O., Sayyed M. I., Zaid M. H. M., Matori K. A. 2017. Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material, Journal of Non-Crystalline Solids, 468: 92-99.
  • 4. Ersundu A. E., Büyükyıldız M., Ersundu M. Ç., Şakar E., Kurudirek M. 2018. The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications, Progress in Nuclear Energy, 104: 280-287.
  • 5. Kaur P., Singh D., Singh T. 2018. Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses, Radiation Physics and Chemistry, 144: 336-343.
  • 6. Kavaz E., Yorgun N. Y. 2018. Gamma ray buildup factors of lithium borate glasses doped with minerals, Journal of Alloys and Compounds, 752: 61-67.
  • 7. Sayyed M. I., Lakshminarayana G., Kityk I. V., Mahdi M. A. 2017. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications, Radiation Physics and Chemistry, 139: 33-39.
  • 8. Singh K. J., Kaur S., Kaundal R. S. 2014. Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems, Radiation Physics and Chemistry, 96: 153-157.
  • 9. Ruengsri S. 2014. Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices, Science and Technology of Nuclear Installations, 5: 2014.
  • 10. Danilyuk P. S., Puga P. P., Krasilinets V. N., Gomonai A. I., Puga G. D., Rizak V. M., Turok I. I. 2018. X-ray Fluorescence of Eu 3+ Ions in Glassy and Polycrystalline Lithium Tetraborate, Glass Physics and Chemistry, 44(1): 1-6.
  • 11. Kaplan M. F. 1989. Concrete Radiation Shielding, John Wiley and Sons Inc, 99s New York.
  • 12. Yorgun N.Y., Kavaz E., Oto B., Akdemir F. 2018. Evaluation of gamma-ray attenuation properties of lithium borate glasses doped with barite, limonite and serpentine, Radiochimica Acta, 106(10): 865-872.
  • 13. Gerward L., Guilbert N., Jensen K. B., Leving H. 2004. WinXCom–a program for calculating X-ray attenuation coefficients, Radiation physics and chemistry, 71: 653-654.
  • 14. Büyükyıldız M. 2016. Effective atomic numbers and electron densities for some lanthanide oxide compounds using direct method in the energy region of 1 keV-20 MeV, Bitlis Eren Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1).
  • 15. Kavaz E. 2018. Investigation on Photon Interaction Properties of Some Polymers Used in Production of Hydrogels, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 13(2): 97-107.
  • 16. Bircan H., Manisa K., Atan A. S., Erdoğan M. 2017. Gama ve X-Işını Radyasyonu Yarı Değer Kalınlık Değerinin Hesaplanması için Yeni Bir Denklem, Süleyman Demirel Universitesi Fen Bilimleri Enstitüsü Dergisi, 12(1).
  • 17. Issa S. A., Sayyed M. I., Zaid M. H. M., Matori K. A. 2018. Photon parameters for gamma-rays sensing properties of some oxide of lanthanides, Results in Physics, 9: 206-210.
  • 18. Hine G. J. 1952. The effective atomic numbers of materials for various gamma ray processes. Physical Review, 85:725.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü