Copula Metodu Kullanarak Bitlis İlindeki Günlük Maksimum ve Minumum Sıcaklık Değişimlerinin Modellenmesi

Bu makalenin amacı Bitlis’in 2012-2017 yılları arasındaki günlük maksimum ve minumum sıcaklıkları arasındaki ilişkiyi Copula methodu ile açıklamaktır. İlişkiyi açıklamak için çeşitli copula aileleri kullanılmıştır. Bunlar; Gumbel, Clayton, Frank, Joe, Gaussian ve Survival Claytondur. Bağımlılık yapısını açıklamak ve Gumbel, Clayton, Frank, Joe, Gaussian ve Survival Clayton copula ailelerinin parametrelerini belirlemek için parametrik olmayan metod olan Kendall Tau ve Spearman Rho değerleri hesaplanmıştır. Uyum iyiliği testleri Kolmogorov Smirnov, Cramer Von Mises, maksimum olabilirlik metodu, Akaike bilgi kriteri ve Bayes bilgi kriteri yardımıyla veri seti için uygun copula ailesi bulunmuştur. Sonuçlar Bitlis’in 2012 yılı ile 2017 yılları arasında günlük maksimum ve minumum sıcaklık değişimleri için güçlü bir bağımlılık olduğunu göstermiştir.

Modeling of daily maximum and minimum temperature changes in Bitlis province using Copula Method

This paper aims to examine the relationship between daily maximum and minimum temperatures of Bitlis inTurkey between 2012-2017 years with Copula method. To present the relationship between the variables, we usecopula families such as; Gumbel, Clayton, Frank, Joe, Gaussian and Survival Clayton copula. To explaindependence structures of the data set and to determine parameters of Gumbel, Clayton, Frank, Joe, Gaussian andSurvival Clayton copula families, we calculate Kendall Tau and Spearman Rho values which are nonparametric.With the help of Kolmogorov Smirnov, Cramer Von Mises which are goodness of fit test, Maximum likelihoodmethod, Akaike information Criteria ad Bayes information criteria, we find the suitable copula family for this dataset. The results show that there is a strong dependence between daily maximum and minimum temperatures ofBitlis between 2012-2017 years.

___

  • Horton B. 1995. Geographical distribution of changes in maximum and minimum temperatures, Atmospheric Research, 37 (1-3): 101-117.
  • Easterling D.R., Horton B., Jones P. D., Peterson T. C., Karl T. R., Parker D. E., Folland C. K. 1997. Maximum and minimum temperature trends for the globe, Science, 277 (5324): 364-367.
  • Sklar 1973. A. Random variables, joint distribution functions, and copulas, Kybernetika, 9 (6): 449-460.
  • Genest C., MacKay J. 1986. The joy of copulas: Bivariate distributions with uniform marginal, The American Statistician, 40 (4): 280-283.
  • Genest C., Rivest L. 1993. P. Statistical inference procedures for bivariate Archimedean copulas, Journal of the American Statistical Association, 88 (423):1034-1043
  • Justel A., Peña D., Zamar R. 1997. A multivariate Kolmogorov-Smirnov goodness of test, Probability Letters Statistics, 35 (3): 251-259.
  • Nelsen R.B. 1999. Introduction. An Introduction to Copulas, Springer New York.
  • Bouyé E., Durrleman V., Nikeghbali A., Riboulet G., Roncelli T. 2000. Copulas for finance-a reading guide and some applications.
  • Frey J.D.R., McNeil A.J., Nyfeler M. 2001. Copulas and credit models, Risk, 10:(111114.10).
  • Kim G., Silvapulle M.J., Silvapulle P. 2007. Comparison of semiparametric and parametric methods estimating copulas, Computational Statistics, Data Analysis, 51 (6): 2836-2850.
  • Genest C., Favre A.C. 2007. Everything you always wanted to know about copula modeling but were afraid to ask, Journal of hydrologic engineering, 12 (4): 347-368.
  • Salvadori G., De Michele C., Kottegoda N. T., Rosso R. 2007. Extremes in nature: an approach using copulas, Springer Science Business Media.
  • Maity R. 2018. Theory of Copula in Hydrology and Hydroclimatology, In Statistical Methods in Hydrology and Hydroclimatology Springer, Singapore, 381-424.
  • Daniel B. 2009. Copula goodness-of-fit testing: an overview and power comparison, The European Journal of Finance, 15: 675-701.
  • Fermanian. J.D. 2005. Goodness-of-fit tests for copulas, Journal of multivariate analysis, 95 (1): 119-152.
  • Genest C., Rémillard B. 2008. Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models, In Annals de l'Institut Henri Poincaré, Probabilities et Statistiques, 44 (6): 1096-1127.
  • Genest C., Rémillard B., Beaudoin D. 2009. Goodness-of-fit tests for copulas: A review and a power study, Insurance: Mathematics and Economics, 44 (2): 199-213.
  • Huard D., Évin G., Favre A.C. 2006. Bayesian copula selection, Computational Statistics Data in Analysis, 51 (2): 809-822.
  • Jordanger L.A., Tjostheim D. 2014. Model selection of copulas: AIC versus a cross validation copula information criterion, Statistics Probability Letters, 92: 249-255.
  • Kojadinovic I., Yan J., Holmes M. 2011. Fast large-sample goodness-of-fit tests for Hydrology copulas, Statistica Sinica, 841-871.
  • Kojadinovic I., Yan J. 2011. A goodness-of-fit test for multivariate multipara meter copulas based on a multiplier central limit theorems, Statistics and Computing, 21 (1): 17-30.
  • Sklar M. 1959. Fonctions de repartition an dimensions et leurs marges, Publ. inst. statist. univ. Paris, 8: 229-231.
  • Patton A.J. 2006. Modelling asymmetric exchange rate dependence, International economic review, 47 (2): 527-556.