Novel Over-Expanded Six-Stroke Engine Mechanism

Dört zamanlı motorların egzoz atık ısısının bir kısmı, çeşitli şekillerde faydalı işlere dönüştürülebilir. Altı zamanlı motor mekanizmalarının egzoz ısısı geri kazanımı ile amaç, motor için faydalı işlerin atık ısısını dönüştürerek ısıl verimliliği arttırmaktır. Bugün altı zamanlı motorlarla ilgili birçok patentin varlığına rağmen, endüstride daha fazla çalışma ve araştırma yapılması gerekmektedir. Bu çalışmada, geleneksel altı zamanlı bir motor yerine, değişken stroklu altı zamanlı bir motor mekanizması teorik olarak incelenmiştir. Yeni mekanizmanın idealize edilmiş bir termodinamik modeli oluşturuldu, kinetik ve dinamik analizler yapıldı ve tasarım parametreleri geleneksel motor mekanizmasına göre incelendi. Sonuç olarak, bu çalışma ile aynı koşullar altında geleneksel altı zamanlı motor mekanizmasına kıyasla, motor torku %10 artarken, krank milindeki yük yalnızca %1 artmıştır.

Novel Over-Expanded Six-Stroke Engine Mechanism

Some of the exhaust waste heat of the four-stroke engines can be transformed into useful work in a variety of ways. With the exhaust heat recovery from / of the six-stroke engine mechanisms, the goal is to increase the thermal efficiency by converting the waste heat of useful work for the engine. Despite the availability of many patents related to six-stroke engines today more study and research are required to be used industrially. In this study, instead of a conventional six-stroke engine, a variable-stroke six-stroke engine mechanism was theoretically examined. An idealized thermodynamic model of the novel mechanism was constructed, kinetic and dynamic analyzes were made, and the design parameters were examined in comparison with the conventional engine mechanism. As a result , compared to the conventional six-stroke engine mechanism under the same conditions as this study , while the engine torque was increased by 10% , whereas the load on the crankshaft increased by only 1% .

___

  • 1. Feidt, M. (2017). Internal Combustion Engines Revisited. Finite Physical Dimensions Optimal Thermodynamics 1, Elsevier. p. 99-124. DOI:10.1016/B978-1-78548-232-8.50004-2.
  • 2. Reitz, R. D., Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, vol. 48, p. 45-51. DOI:10.1016/j.pecs.2014.05.003.
  • 3. Zhao, J. (2017). Research and application of over-expansion cycle (Atkinson and Miller) engines – A review. Applied Energy, vol. 185, p. 310-319. DOI:10.1016/j.apenergy.2016.10.063.
  • 4. Arabaci, E., İçingür, Y., (2016). Thermodynamic investigation of experimental performance parameters of a water injection with exhaust heat recovery six-stroke engine, Journal of the Energy Institute, vol. 89, p. 569-577. DOI:10.1016/j.joei.2015.06.006.
  • 5. Conklin, J. C., Szybist J. P., (2010). A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery, Energy v. 35, p.1658-1664. DOI:10.1016/j.energy.2009.12.012.
  • 6. Arabaci, E., İçingür Y., Solmaz, H., Uyumaz A., Yılmaz, E., (2015). Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine, Energy conversion and Management v. 98, p. 89-97. DOI:10.1016/j.enconman.2015.03.045.
  • 7. Szybist J. P., Conklin J. C., (2013). U.S. Patent No. US008291872B2. Washington, DC: U.S. Patent and Trademark Office.
  • 8. Postrzednik, S. (2014). Effects of the water injection into the hot charge at isochoric conditions, Energy v. 71: p. 17-20, DOI:10.1016/j.energy.2014.03.112
  • 9. Paul, G., et al. (2015). Droplet oscillation and pattern formation during Leidenfrost phenomenon." Experimental Thermal and Fluid Science v. 60, p. 346-353, DOI:10.1016/j.expthermflusci.2014.05.011.
  • 10. Kelem, H., & Kelem, E. (2010). U.S. Patent No. 7,726,268. Washington, DC: U.S. Patent and Trademark Office.
  • 11. Khalife, E., Tabatabaei, M., Demirbaş, A., Aghbashlo, M.. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science v. 59, p. 32-78. DOI:10.1016/j.pecs.2016.10.001.
  • 12. Liu, F., et al. (2014). Development of performance and combustion system of Atkinson cycle internal combustion engine. Science China Technological Sciences v. 57, p. 471-479. DOI: 10.1007/s11431-014-5474-8.
  • 13. Naber, J. D., Johnson, J. E. (2014). Internal combustion engine cycles and concepts. Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, Woodhead Publishing. p. 197-224. DOI: 10.1533/9780857097422.2.197.
  • 14. Murtaza, G., Bhatti, A.I., Arshad, A. (2017). Nonlinear Robust Control of Atkinson Cycle Engine. IFAC-PapersOnLine v. 50, p. 3685-3690. DOI: 10.1016/j.ifacol.2017.08.562.
  • 15. Siczek, K. J. (2016). Valve train thermodynamic effects. Tribological Processes in the Valve Train Systems with Lightweight Valves, Butterworth-Heinemann, p. 39-58. DOI: 10.1016/B978-0-08-100956-7.00015-1
  • 16. Gleich, A. (2016). German Patent No: DE201510002385, Deutschland, German Patent and Trademark Office.
  • 17. CTL engine Mechanism, CTL-Engineering, from http://www.ctl-engineering.com, accessed on 2018-02-01.
  • 18. Catalano G., Compact And Modular Atkinson Cycle Engine, from https://contest.techbriefs.com/2016/entries/automotive-transportation/7029, accessed on 2018-03-20.
  • 19. Lugo Engine, from http://lugodevelopmentsinc.com, accessed on 2018-03-10.
  • 20. Guimaraes, B., UMotor - Over-Expanded Engine, from, https://contest.techbriefs.com/2016/entries/sustainable-technologies/7088, accessed on 2018-01-10.
  • 21. Waissi, G. R. (1995). Internal combustion (IC) engine with minimum number of moving parts. In SAE Technical Papers DOI: 10.4271/950090
  • 22. Read, T., (2009). U.S. Patent No. US8894530B1. Washington, DC: U.S. Patent and Trademark Office.
  • 23. Wiseman R., (2001). U.S. Patent No. US6510831B2. Washington, DC: U.S. Patent and Trademark Office.
  • 24. Caton, J. A. (2015). An introduction to thermodynamic cycle simulations for internal combustion engines, John Wiley & Sons.
  • 25. Çengel, Y. A., Boles, M. A. (2014). Thermodynamics: An engineering approach. Boston: McGraw-Hill Education.
  • 26. Honda Motor Corp. (1988). "Honda GX 240, GX270, GX340, GX390 Service and User Manual-part-a." 28-55.