İğde Çekirdeğinden Elde Edilen Aktif Karbon Kullanılarak Sulu Çözeltilerden Pb(II) Adsorpsiyonun İncelenmesi: İzoterm ve Kinetik

Bu çalışmada, önceki çalışmamızda ZnCI2 aktifleştiricisi kullanılarak kimyasal aktivasyon yöntemi ile iğdeçekirdeğinden elde edilen 1836 m2/g BET yüzey alanına sahip aktif karbon kullanılarak sulu çözeltilerden Pb(II)adsorpsiyonu incelenmiştir. Bu amaçla, çözelti pH’ı, aktif karbon miktarı, çözelti başlangıç derişimi ve işlemsıcaklığı parametrelerinin Pb(II) adsorpsiyonuna etkileri ayrı ayrı incelenmiştir. Artan sıcaklık ve aktif karbonmiktarı ile Pb(II) giderim yüzdesinin arttığı belirlenmiştir. Adsorpsiyon denge verilerinin Langmuir izotermineuyduğu tespit edilmiş olup, maksimum adsorpsiyon kapasitesi (qmaks) çözelti başlangıç pH değeri pH=4’de 86,207mg.g-1 olarak bulunmuştur. Sulu çözeltiden Pb(II) adsorpsiyon kinetiğinin Elovich kinetik model ile uyumluolduğu tespit edilmiştir. Partikül içi difüzyon modeli sonuçlarına göre adsorpsiyon işleminin birden fazlabasamakta gerçekleştiği ve difüzyonu kontrol eden basamağın en küçük difüzyon katsayısına (1,455) sahip olan3. basamak olduğu belirlenmiştir

Investigation of Pb (II) Adsorption From Aqueous Solutions Using Activated Carbon Obtained From Elaeagnus Seed: Isotherm and Kinetic

In our previous study, activated carbon with a BET surface area of 1836 m2 / g was obtained by the chemical activation method from elaeagnus seed. ZnCl2was used as a activator in the synthesis of actived carbon. In this study, Pb (II) adsorption from aqueous solutions was investigated using this activated carbon. For this purpose, the effects of some parameters such as solution pH, amount of activated carbon, solution initial concentration and treatment temperature Pb (II) adsorption were separately investigated. It was determined that the percentage of Pb (II) removal increases with increasing temperature and amount of activated carbon. It was found that adsorption equilibrium data are consistent with Langmuir isotherm. Thus, the maximum adsorption capacity (qmax) was found as 86.207 mg.g-1 at pH = 4. The adsorption kinetics of the aqueous solution Pb (II) were found to be consistent with the Elovich kinetic model. According to the results of the particle diffusion model, it was determined that the adsorption process is performed in more than one step and the third step has the smallest diffusion coefficient (1,455) of the diffusion controlling step.

___

  • Demirbas A. 2008. Heavy metal adsorption onto agro-based waste materials, A review. Journal of Hazardous Materials, 157: 220-229.
  • Hua M., Zhang S., Pan B., Zhang W., Lv L., Zhang Q. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides, A review. Journal of Hazardous Materials, 211: 317- 331.
  • Fu F., Wang Q. 2011. Removal of heavy metal ions from wastewaters, A review. Journal of Environmental Management, 92: 407-418.
  • İmamoğlu M., Tekir O. 2008. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination, 228: 108-113.
  • Saka C., Sahin Ö., Küçük M.M. 2012. Application of agricultural and forest waste adsorbents for removal of lead (II) from contaminated water, International Journal of Environmental Science and Technology, 9: 379-394.
  • Ceyhan A.A., Şahin Ö., Baytar O., Saka C. 2013. Surface and porous characterization of activated carbon prepared from pyrolysis of biomass by two-stage procedure at low activation temperature and it's the adsorption of iodine, Journal of Analytical and Applied Pyrolysis, 104: 378-38
  • Cagnon B., Chedeville O., Cherrier, J.F., Caqueret V., Porte C. 2011. Evolution of adsorption kinetics and isotherms of gallic acid on an activated carbon oxidized by ozone: Comparison to the raw material, Journal of the Taiwan Institute of Chemical Engineers, 42 (6): 996-1003.
  • ] Weber W.J., Morris J.C. 1963. Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div, 89 (2): 31-60.
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc, 40: 1361-1368.
  • Weber T.W. 1974. Chakkravorti, R.K., Pore and solid diffusion models for fixedbed adsorbers, AIChE J., 20: 228-238.
  • Freundlich H.M.F. 1906. Over the adsorption in solution, J. Phys. Chem, 57: 385-470.
  • Temkin M.I., Pyzhev V. 1940. Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physiochim, 12: 327-356.
  • De Luna M.D.G., Flores E.D., Genuino D.A.D., Futalan C.M., Wan M.W. 2013. Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hullsOptimization, isotherm and kinetic studies, Journal of the Taiwan Institute of Chemical Engineers, 44 (4): 646-653.
  • Kumar K.V., Porkodi K., Rocha F., 2008. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions, J Hazard Mater, 151: 794.
  • Tan I.W., Ahmad L., Hameed B.H. 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, Journal of Hazardous Materials, 154 (1-3): 337-346.
  • Mouni L., Merabet D., Bouzaza A., Belkhiri L. 2011. Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination, 276 (1-3): 148-153.
  • Hamza I.A.A., Martincigh B.S., Ngila J.C. 2013. Nyamori, V.O., Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite, Physics and Chemistry of the Earth, 66: 157-166.
  • Nam S.W., Choi D.J., Kim S.K., Her N., Zoh K.D. 2014. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon, Journal of hazardous materials, 270: 144-152.
  • Noorimotlagh Z., Darvishi Cheshmeh Soltani R., Khataee R., Shahriyar S., Nourmoradi H. 2014. Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch, Journal of the Taiwan Institute of Chemical Engineers, 45 (4): 1783-1791.
  • Karaçetin G., Sivrikaya S., Imamoğlu M. 2014. Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, Journal of Analytical and Applied Pyrolysis, 110: 270-276.
  • Martín-González M., González-Díaz O., Susial P., Araña J., Herrera-Melián J.A., Doña-Rodríguez J.M., Pérez-Peña J. 2014. Reuse of Phoenix canariensis palm frond mulch as biosorbent and as precursor of activated carbons for the adsorption of Imazalil in aqueous phase, Chemical Engineering Journal, 245: 348-358.
  • Liu T., Li Y., Du Q., Sun J., Jiao Y., Yang G., Wu D. 2012. Adsorption of methylene blue from aqueous solution by graphene, Colloids and Surfaces B: Biointerfaces, 90 (1): 197-203.
  • Peydayesh M., Rahbar-Kelishami A. 2014. Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies, Journal of Industrial and Engineering Chemistry, 21: 1014-1019.
  • Ahmed M.J., Dhedan S.K. 2012. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons, Fluid Phase Equilibria, 317: 9-14.
  • Hameed B.H., El-Khaiary M.I. 2008. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies, Journal of Hazardous Materials, 154 (1-3): 237-244.
  • Liu Q.S., Zheng T., Wang P., Guo L. 2010. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation, Industrial Crops and Products, 31 (2): 233-238.
  • Yalçın G. 2012. İğde (Elaeagnus angustifolia L.) Bitkisinin Çesitli Kısımlarının Kimyasal Bilesenlerinin Farklı Yöntemler Kullanılarak Antioksidan Kapasitesinin İncelenmesi, Doktora Tezi, Ege Üniversitesi Sağlık Bilimleri Enstitüsü, İzmir.
  • Sreejalekshmi, K.G., Krishnan, K.A., Anirudhan, T.S., 2009. Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies. Journal of Hazardous Materials, 161 (2-3): 1506-1513.
  • Sun S., Yang J., Li Y., Wang K., Li X., 2014. Ecotoxicology and Environmental Safety Optimizing adsorption of Pb ( II ) by modi fi ed litchi pericarp using the response surface methodology. Ecotoxicology and Environmental Safety 108: 29-35.
  • Karnib M., Kabbani A., Holail H., Olama Z. 2014. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 50: 113-120.