Akıllı Şebekelerde Kendi Kendini İyileştirme

Günümüzün güç sistemleri, Tesla'nın 1880'lerde geliştirilen tasarım prensiplerini temel almış ve zaman içinde gelişerek şimdiki halini almıştır. İletişim teknolojisi çok hızlı gelişmesine rağmen, güç sistemlerinin gelişimi buna ayak uyduramamıştır. Çünkü kullanılan güç sisteminin yapısı genellikle çok geride kalmış ve 21. yüzyılın ihtiyaçlarına cevap verememiştir. Günümüz teknolojisinin hızla gelişmesiyle elektrik şebekelerinde bilgisayar ve ağ teknolojilerini kullanarak elektrik şebekesini daha iyi hale getirmek mümkün olmuştur. Böylece elektrik şebekeleri, çift yönlü veri ve elektrik akışı sağlayarak tüketicilere sürdürülebilir, güvenli ve kesintisiz bir enerji sağlayacaktır. Bunu yapabilen şebekelere akıllı şebekeler denir. Akıllı şebekenin en önemli özelliklerinden birisi; Olası bir kesinti veya arıza durumunda, kendi kendini iyileştirerek enerji akışını sağlamaya devam etmesidir. Kendi kendini iyileştirme süresi ne kadar az ise şebekede enerjisiz kalan kısım o kadar az olacak ve sistemin kendini yenileyerek stabil çalışmasına devam etmesi o kadar daha kısa sürede olacaktır. Bunu başarabilmek için kullanılan yöntemler ve araçlar bu makalede bahsedilmiştir. 2003 ve 2017 yılları arasında kendi kendini iyileştirme ile ilgili yayınlar araştırılarak kullanılan yöntemler belirtilmiştir. Kendi kendini iyileşme kavramında özellikle iletim, dağıtım, mikro şebekeler, geçici hal kararlılığı ve siber saldırı açıklanmıştır.

Self-Healing In Smart Grid: A Review

Today's power systems are based on Tesla's design principles developed in the 1880s and have evolved overtime to become the current aspect. Although communication technology is developing very fast, thedevelopment of power systems has not been able to keep up with it. Because the structure of the power systemused is generally far behind and is unable to respond the needs of the 21st century. With the rapid developmentof today's technology, it has become possible to make the electricity network better by utilizing the computer andnetwork technologies in the electricity networks. Thus, the electricity networks will provide a sustainable, safeand uninterrupted energy to the consumers by providing bi-directional data and electricity flow. The grids thatcan do this are called smart grids. One of the most important features of smart grid is that; in the case of apossible outage or fault, self-healing by continuing to provide energy flow.The lower the self-healing time, theless energy will remain in the network and the less time the system will continue to work to renew itself. Themethods and tools used to achieve this are discussed in this article.self-healing algorithms and their applicationareas were surveyed using publications between 2003 and 2017. In the concept of self-improvement, especiallytransmission, distribution, micro grids, transient stability and cyber attack are explained.

___

  • Calvillo C.F., Sánchez-Miralles A., Villar J. 2016. Energy management and planning in smart cities, Renewable and Sustainable Energy Reviews, 55: 273-87.
  • Selvam M.Muthamizh., Gnanadass R., Padhy N.P. 2016. Initiatives and technical challenges in smart distribution grid, Renewable and Sustainable Energy Reviews, 58: 911-917.
  • Bayindir R., Colak I., Fulli G., Demirtas K. 2016. Smart grid technologies and applications, Renewable and Sustainable Energy Reviews, 66: 499-516.
  • Alagoz B.B., Kaygusuz A., Karabiber A. 2012. A user-mode distributed energy management architecture for smart grid applications, Energy, 44 (1): 167-177.
  • Kaygusuz A., Keles C., Alagoz B. B., Karabiber A. 2013. Renewable energy integration for smart sites , Energy and Buildings, 64: 456-62.
  • ERGEG. 2009. Position paper on smart grids. An ERGEG public consultation paper.
  • Camarinha-Matos Luis M. 2016. Collaborative smart grids–A survey on trends, Renewable and Sustainable Energy Reviews, 65: 283-94.
  • Elgenedy M.A., Massoud A.M., Ahmed S. 2015. Smart grid self-healing: Functions, applications, and developments, First Workshop on Smart Grid and Renewable Energy(SGRE), pp1-6, Doha.
  • Stephens Jennie C., Wilson Elizabeth J., Peterson Tarla R., James M. 2013. Getting Smart: Climate Change and the Electric Grid, Challenges, 4: 201-216.
  • Anzar M., Nadeem J., Muhammad K., R. Sohail. 2015. An overview of load management techniques in smart grid, International Journal of Energy Research, 39 (11): 1437-50.
  • Ghosh D., Sharman R., Rao H.R., Upadhyaya S. 2007. Self-healing systems-survey and synthesis, Decision Support Systems, 42 (4): 2164-85.
  • Mangal D., Chile H., Rajan. 2018. Fault Diagnosis in Smart Distribution System Using Smart Sensors and Entropy, Advanced in Smart Grid and Renewable Energy, 1: 623-631.
  • Bose A. 2010. Smart transmission grid applications and their supporting infrastructure, IEEE Transactions on Smart Grid , 1 (1): 11-9.
  • Li F., Qiao W., Sun H., Wan H., Wang J., Xia Y., Xu Z., Zhang P. 2010. Smart transmission grid: Vision and framework, IEEE Transactions on Smart Grid, 1 (2): 168-77.
  • Ma H., Chan K.W., Liu M. 2013. An Intelligent Control Scheme to Support Voltage of Smart Power Systems, IEEE Transactions on Industrial Informatics, 9 (3): 1405-14.
  • Arefifar S. A., Mohamed Y. A. R., EL-Fouly I.T.M. 2013. Comprehensive Operational Planning Framework for Self-Healing Control Actions in Smart Distribution Grids, IEEE Transactions on Power Systems, 28 (4): 4192-00.
  • Yan Y., Qian Y., Sharif H., Tipper D. 2012. A Survey on Cyber Security for Smart Grid Communications, IEEE Communications Surveys & Tutorials , 14 (4): 998-10.
  • Jiao Z., Men K., Zhong J. 2012 . A control strategy to fast relieve overload in a self-healing smart grid, IEEE Power and Energy Society General Meeting, pp1-7, San Diego.
  • Ghanbari T., Farjah E. 2013. Unidirectional fault current limiter: an efficient interface between the microgrid and main network, IEEE Transactions on Power Systems, 28 (2): 1591-98.
  • Wang J., Yang Q., Sima W., Yuan T., Zahn M. 2011. A Smart Online Over-Voltage Monitoring and Identification System, Energies, 4 (4): 599-15.
  • Arefifar S.A., Mohamed Y.A.I., EL-Fouly T.H.M. 2013. Comprehensive operational planning framework for self-healing control actions in smart distribution grids, IEEE Transactions on Power Systems, 28 (4): 4192-00.
  • Qianqian Liu., Zeng X., Xue Ma., Xiang Li. 2013. A new smart distribution grid fault selfhealing system based on traveling-wave, IEEE Industry Applications Society Annual Meeting, pp1-6, Lake Buena Vista.
  • Ahadi A., Ghadimi N., Mirabbasi D. 2015. An analytical methodology for assessment of smart monitoring impact on future electric power distribution system reliability, Complexity, 21: 99– 113.
  • Mahat P., Chen Z., Jensen B.B., Bak C.L. 2011. A simple adaptive overcurrent protection of distribution systems with distributed generation, IEEE Transactions on Smart Grid, 2 (3): 428- 37.
  • Nieto J. D., Remon D., Cantarellas A.M., Koch-Ciobotaru C., Rodriguez P. 2015. Overview of intelligent substation automation in distribution systems, IEEE 24th International Symposium on Industrial Electronics (ISIE), pp922-927, Buzios.
  • Alwala S., Feliachi A., Choudhry M.A. 2012. Multi Agent System based fault location and isolation in a smart microgrid system, IEEE PES Innovative Smart Grid Technologies (ISGT), pp 1-4, Washington DC.
  • Eissa M.M. 2012. Protection technique for complex distribution smart grid using wireless token ring protocol, IEEE Transactions on Smart Grid, 3 (3): 1106-18.
  • Qiang X., Haibin G., Xugang F., Zhenzhi C. 2016. Research on self-healing strategy of smart distribution grid based on improved ant colony algorithm, Chinese Control and Decision Conference (CCDC), pp390-395, Yinchuan.
  • Seethalekshmi K., Singh S. N., Srivastava S.C. 2012. A synchrophasor assisted frequency and voltage stability based load shedding scheme for self-healing of power system, IEEE Transactions on Smart Grid, 2 (2): 221-30.
  • Fang X., Misra S., Xue G., Yang D. 2012. Smart Grid – the new and improved power grid: a survey, IEEE Communication Surveys & Tutorials, 14 (2): 944-80.
  • Elmitwally A., Elsaid M., Elgamal M., Chen Z. 2015. A Fuzzy-Multiagent Self-Healing Scheme for a Distribution System With Distributed Generations, IEEE Transactions on Power Systems, 30 (5): 2612-22.
  • Eriksson M., Armendariz M., Vasilenko O.O., Saleem A., Nordström L. 2015. MultiagentBased Distribution Automation Solution for Self-Healing Grids, IEEE Transactions on Industrial Electronics, 62 (4): 2620-28.
  • Jing D., Li Z., Hannon C., Chen C., Wang J., Shahidehpour M. 2017. Toward a Cyber Resilient and Secure Microgrid Using Software-Defined Networking, IEEE Transactions on Smart Grid, 8 (5): 2494-04.
  • Oliveira D.Q., Zambroni de Souza A.C., Santos M.V., Almeida A.B., Lopes B.I.L., Saavedra O.R. 2017. A fuzzy-based approach for microgrids islanded operation, Electric Power Systems Research, 149: 178-89.
  • Lasseter R.H. 2011. Smart distribution: Coupled microgrids, Proc. IEEE , 99 (6): 1074-82.
  • Gomes L., Faria P., Morais H., Vale Z., Ramos C. 2014. Distributed, agent-based intelligent system for demand response program simulation in smart grids, IEEE Intelligent Systems, 29 (1): 56-65.
  • Karabiber A., Keles C., Kaygusuz A., Alagoz B. B. 2013. An approach for the integration of renewable distributed generation in hybrid DC/AC microgrids, Renewable Energy, 52: 251-59.
  • Monadi M., Gavriluta C., Luna A., Candela J. I., Rodriguez P. 2017. Centralized Protection Strategy for Medium Voltage DC Microgrids, IEEE Transactions on Power Delivery, 32 (1): 430-40.
  • Momoh J. 2012. Smart grid fundamentals of design and analysis, Piscataway, NJ Wiley.
  • De La Ree J., Centeno V., Thorp J.S., Phadke A.G. 2010. Synchronized Phasor Measurement Applications in Power Systems, IEEE Transactions on Smart Grid, 1 (1): 20-27.
  • Monshi M.M., Mohammed O.A. 2013. A study on the efficient wireless sensor networks for operation monitoring and control in smart grid applications, Proceedings of IEEE Southeastcon, pp1-5, 4-7 April, Jacksonville FL USA.
  • Gharavi H., Hu Bin. 2013. 4-way handshaking protection for wireless mesh network security in smart grid, IEEE Global Communications Conference (GLOBECOM), pp790-795, Atlanta GA.
  • Jiasong Mu., Wei Song., Wei Wang. 2015. Self-healing hierarchical architecture for ZigBee network in smart grid application, International Journal of Sensor Networks, 17 (2): 130-37.
  • Galli S., Scaglione A., Wang Zhifang. 2011. For the grid and through the grid: the role of power line communications in the smart grid, Proc. IEEE , 99 (6): 998-27.
  • Shitharth S., Prince Winston D. 2015. A Comparative Analysis between Two Countermeasure Techniques to Detect DDoS with Sniffers in a SCADA Network, Procedia Technology, 21: 179- 86.
  • Calvillo C.F., Sánchez-Miralles A., Villar J. 2016. Energy management and planning in smart cities, Renewable and Sustainable Energy Reviews , 55: 273-87.
  • Zhang Yao., Chen Wei., Gao Weijun. 2017. A survey on the development status and challenges of smart grids in main driver countries, Renewable and Sustainable Energy Reviews, 79: 137- 47.
  • Chunming Tu., Xi He., Zhikang Shuai., Fei Jiang. 2017. Big data issues in smart grid – A review, Renewable and Sustainable Energy Reviews, 79: 1099-07.
  • Ali S.M., Jawad M., Khan B., Mehmood C.A., Zeb N., Tanoli A., Farid U., Glower J., Khan S.U. 2016. Wide area smart grid architectural model and control:A survey, Renewable and Sustainable Energy Reviews, 64: 311-28.
  • You Haibo., Vittal V., Yang Zhong. 2003. Self-healing in power systems: an approach using islanding and rate of frequency decline-based load shedding, IEEE Transactions on Power Systems, 18 (1): 174-81.
  • Moaddabi N., Hosseinian S.H., Gharehpetian G.B. 2012. Practical Framework for Self-Healing of Smart Grids in Stable/Unstable Power Swing Conditions, Electric Power Components and Systems, 40 (6): 575-96.
  • Moaddabi N., Gharehpetian G.B. 2013. Wide-area Method for Self-healing of Smart Grids in Unstable Oscillations, Electric Power Components and Systems, 41 (4): 365-82.
  • Behfarnia A., Eslami A. 2016. Dynamics and Steady-State Behavior of Self-Healing CyberPhysical Networks in Light of Cyber-Node Delays, IEEE Globecom Workshops (GC Wkshps), pp1-6, Washington DC.
  • Leszczyna R. 2018. Cybersecurity and privacy in standards for smart grids–A comprehensive survey, Computer Standards & Interfaces, 56: 62-73.
  • Lin H., Chen C., Wang J., Qi J., Jin D., Kalbarczyk T.Z., Iyer K.Y. 2016. Self-Healing AttackResilient PMU Network for Power System Operation, IEEE Transactions on Smart Grid, 99 :1- 15.
  • Wang J. 2016. A Resilient Self-Healing Cyber Security Framework for Power Grid, Cybersecurity for Energy Delivery Systems Peer Review.