Tek Fazlı Köprüsüz Düşürücü GFD Konvertörleri için PQ Tabanlı Yeni Bir Denetleyici

Doğrusal olmayan yükler enerji sistemlerine bağlandıklarında şebekenin güç kalitesini bozmaktadırlar. Bu yüzdenenerji sistemlerinde güç faktörünün (GF) yanı sıra toplam harmonik bozulmasınında (THB) iyileştirilmesigerekmektedir. Bu çalışmada enerji sistemlerinde GF'nin yanı sıra THB'ninde geliştirilmesinde kullanılan tek fazköprüsüz düşürücü güç faktörü düzeltme (DGFD) konvertörlerinin kontrolü için PQ güç teorisine dayalı yeni birdenetleyici önerilmektedir. Köprüsüz DGFD konvertörlerde, girişte bulunan köprü doğrultucu karmaşıklığıazaltmak ve genel verimliliği artırmak için ortadan kaldırılmaktadır. Önerilen PQ tabanlı denetleyicide referansakım sinyali anlık aktif ve reaktif güçler kullanılarak elde edilmektedir. Elde edilen referans akım sinyali PWManahtarlama sinyallerini üretmek için akım kontrol döngüsünde kullanılmaktadır. Önerilen denetleyicininperformansı 100W’lık DGFD konvertör için PSIM programı kullanılarak doğrulanmıştır. Önerilen denetleyici tekfazlı sistemlerde GF'nin yanı sıra THB'nin geliştirilmesi açısından geçici ve kararlı durum performansına göreoldukça başarılı bulunmuştur.

A New Controller based on PQ for Single Phase Bridgeless Buck PFC Converters

When nonlinear loads are connected to energy systems, they decrease the power quality of the grid. Therefore, there is a need to improve the total harmonic distortion (THD) as well as the power factor (PF). In this study, a new controller based on PQ power theory is presented for single-phase bridgeless buck power factor correction (DPFC) converters to improve the THD as well as the PF of the energy systems. In bridgeless BPFC converters, the input bridge rectifier is removed to reduce complexity and increase overall efficiency. In the proposed PQ based controller, the reference current signal is obtained by using the active and reactive powers. The reference current signal is used in the current control loop to generate PWM switching signals. The performance of the proposed controller is verified using the PSIM circuit simulation for a 100W BPFC converter. The proposed controller is found to be quite successful in terms of the improvement of THD and PF in single phase systems according to the transient and steady state performance.

___

  • Bojoi R.I., Limongi L.R., Roiu D., Tenconi A. 2011. Enhanced power quality control strategy for single-phase inverters in distributed generation systems, IEEE Transactions on Power Electronics, 26 (3): 789-806.
  • He J., Li Y.W., Blaabjerg F., Wang X. 2014. Active harmonic filtering using current-controlled, grid-connected DG units with closed-loop power control, IEEE Transactions on Power Electronics, 29 (2): 642-653.
  • Marei M.I., El-Saadany E.F., Salama M.M.A. 2002. Flexible distributed generation: (FDG), Power Engineering Society Summer Meeting, pp49-53, 21-25 July, Chicago, IL, USA, USA.
  • Standard IEC 61000-3-2. 2010. Electromagnetic compatibility (EMC) - Part 3-2:Limits-Limits for Harmonic Current Emissions (Equipment Input Current ≤ 16 A per Phase), 26s.
  • Ohnuma Y., Itoh J. 2014. A novel single-phase buck PFC AC-DC converter with power decoupling capability using an active buffer, IEEE Transactions on Industry Applications, 50 (3): 1905-1914.
  • Huber L., Gang L., Jovanovi´c M.M. 2010. Design-Oriented analysis and performance evaluation of buck PFC front-end, IEEE Transactions on Power Electronics, 25 (1): 85-94.
  • Fardoun A.A., Ismail E.H., Khraim N., Sabzali A.J., Al-Saffar M.A. 2014. Bridgeless High Power Factor Buck-Converter Operating in Discontinuous Capacitor Voltage Mode, IEEE Transactions on Industry Applications, 50 (5): 3457–3467.
  • Hwu K. I., Shieh J.J., Jiang W.Z. 2017. A new bridgeless buck PFC rectifier, International Journal of Circuit Theory and Applications, 45: 707-719.
  • Shin J.W., Cho B.H. 2012. Digitally implemented average current-mode control in discontinuous conduction mode PFC rectifier, IEEE Transactions on Power Electronics, 27 (7): 3363-3373.
  • Chen B., Xie Y., Huang F., Chen J. 2006. A novel single-phase buck PFC converter based on onecycle control, Power Electronics and Motion Control Conference, pp1-5, 14-16 Aug, Shanghai, China.
  • Park J.H., Kim D.J. 2016. Predictive control algorithm including conduction-mode detection for PFC converter, IEEE Transactions on Industrial Electronics, 63 (9): 5900-5911.
  • Yang S., Meng C., Chiu C., Chang C., Chen K., Lin Y., Lin S., Tsai T. 2016. A buck power factor correction converter with predictive quadratic sinusoidal current modulation and line voltage reconstruction, IEEE Transactions on Industrial Electronics, 63 (9): 5912-5920.
  • Marcos-Pastor A., Vidal-Idiarte E., Cid-pastor A., Martinez-Salamero L. 2016. Interleaved digital power factor correction based on the sliding-mode approach, IEEE Transactions on Power Electronics, 31 (6): 4641-4653.
  • Wang W., Lu D.D.C., Chu G.M.L. 2011. Digital control of bridgeless buck PFC converter in discontinuous-input-voltage-mode, 37th Annual Conference on IEEE Industrial Electronics Society, pp1312-1317, 7-10 Nov., Melbourne, VIC, Australia.
  • Akagi H., Kanazawa Y., Nabae A. 1984. Instantaneous reactive power compensators comprising switching devices without energy storage components, IEEE Transactions on Industry Applications, 20 (3): 625-630.
  • Khadkikar V., Chandra A., Singh B. N. 2009. Generalised single-phase p-q theory for active power filtering: Simulation and DSP-based experimental investigation, IET Power Electronics, 2 (1): 67- 78.
  • Xiong D., Yandong L., Guoning W., Pengju S., Heng Ming T. 2014. Estimation of Synchronization Signal Using Sinusoidal Amplitude Integrator in Synchronous Reference Frame, Energy Conversion Congress and Exposition, pp4925-4931, 14-18 Sept., Pittsburgh, PA, USA.
  • Zeng; Z. Yang J., Chen S., Huang J. 2014. Reduced order generalized integrators based selective harmonic compensation current controller for shunt active power filters, Energy Conversion Congress and Exposition, pp1650-1655, 14-18 Sept., Pittsburgh, PA, USA.
  • Soares V., Verdelho P., Marques G.D. 2000. An instantaneous active and reactive current component method for active filters, IEEE Transactions on Power Electronics, 15 (4): 660-669.
  • Grigore V., Kyyra J. 2000. High power factor rectifier based on buck converter operating in discontinuous capacitor voltage mode, IEEE Transactions on Power Electronics, 15 (6): 1241- 1249.
  • Kurian N.S., Mohan F. 2014. Performance Evaluation of Bridgeless High Power factor Buck Front End, International Journal of Engineering Research and Technology, 3 (4): 224-227.
  • Jang Y., Jovanovicacute M.M. 2011. Bridgeless high-power-factor buck converter, IEEE Transactions on Power Electronics, 26 (2): 602-611.
  • Mohan N., Undeland T.M., Robbins W. P. 1995. Power Electronics: Converters, Applications and Design, John Wiley and Sons, 821s. Canada.
  • Keogh B. 2010. Power Factor Correction Using the Buck Topology-Efficiency Benefits and Practical Design Considerations, https://www.ti.com/seclit/ml/slup264/slup264.pdf (Erişim Tarihi: 07.06.2018)