Obezitede Güncel Yaklaşımlar: Kahverengi Yağ Dokusu Transplantasyonu ve Vagal Sinir Blokajı

Obezite, vücutta anormal miktarda yağ birikimi ile karakterize, kronik bir hastalıktır. Son yıllarda Türkiye’de ve dünyadaobezite prevalansı giderek artmaktadır. Bu artışla birlikte obezite ile ilişkili komorbidite riskinin azaltılması için yeni tedaviseçeneklerine duyulan ihtiyaçlar da önem kazanmaktadır. Kahverengi yağ dokusu transplantasyonu ve vagal sinir blokajıbu yaklaşımlardan bazılarıdır. Ratlar üzerinde yapılmış mevcut çalışmalarla, kahverengi yağ dokusu transplantasyonununobezite ve diyabet üzerinde olumlu etkileri olabileceği belirtilmektedir. Bariatrik cerrahiye alternatif bir tedavi yöntemisağlamak amacıyla geliştirilen vagal sinir blokajının ise vücut ağırlık kaybı, kan basıncı, kan lipitleri ve glisemik kontrol gibiparametreler üzerinde olumlu etkileri bulunmaktadır. Bu derleme kahverengi yağ dokusu transplantasyonu ve vagal sinirblokajının obezite üzerine etkilerini incelemek amacıyla yazılmıştır.

Recent Approach in Obesity: Brown Adipose Tissue Transplantation and Vagal Nerve Blockage

Obesity is a chronic disease characterized by abnormal accumulation of fat in the body. In recent years in Turkey and in the world, obesity prevalence is increasing. With this increase, the need for new treatment options are gaining importance to reduce the risk of obesity-related comorbidity. Brown adipose tissue transplantation and vagal nerve blockage are some of these approaches. It is stated in the current studies on rats that brown adipose tissue transplantation may have positive effects on obesity and diabetes. Vagal nerve blockage, developed to provide an alternative treatment method to bariatric surgery, has positive effects on parameters such as body weight loss, blood pressure, blood lipids and glycemic control. This review was written to examine the effects of brown adipose tissue transplantation and vagal nerve blockage on obesity.

___

  • 1. White JD, Dewal RS, Stanford KI. The beneficial effects of brown adipose tissue transplantation. Mol Aspects Med. 2019;68(2019):74-81.
  • 2. Calderon-Dominguez M, Mir JF, Fucho R, Weber M, Serra D, Herrero L. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte. 2016;5(2):98- 118.
  • 3. Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: A mini-review. Gerontology. 2012;58(1):15-23.
  • 4. Gomez-Hernandez A, Beneit N, Diaz-Castroverde S, Escribano O. Differential role of adipose tissues in obesity and related metabolic and vascular complications. Int J Endocrinol. 2016;2016:1216783.
  • 5. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front Endocrinol. 2016;7:30.
  • 6. Lidell ME, Enerbäck S. Brown adipose tissue—a new role in humans? Nat Rev Endocrinol. 2010;6(6):319.
  • 7. Dong M, Lin J, Lim W, Jin W, Lee HJ. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front Med. 2018;12(2):130-8.
  • 8. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509-17.
  • 9. Halpern B, Mancini MC, Halpern A. Brown adipose tissue: What have we learned since its recent identification in human adults. Arq Bras Endocrinol Metabol. 2014;58(9):889-99.
  • 10. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123(8):3404-8
  • 11. Betz MJ, Enerbäck S. Human brown adipose tissue: What we have learned so far. Diabetes. 2015;64(7):2352-60
  • 12. Ono K, Tsukamoto-Yasui M, Hara-Kimura Y, Inoue N, Nogusa Y, Okabe Y, et al. Intragastric administration of capsiate, a transient receptor potential channel agonist, triggers thermogenic sympathetic responses. J Appl Physiol. 2011;110(3):789-98.
  • 13. Jimenez-Pavon D, Corral-Perez J, Sánchez-Infantes D, Villarroya F, Ruiz JR, Martinez-Tellez B. Infrared thermography for estimating supraclavicular skin temperature and bat activity in humans: A systematic review. Obesity 2019;27(12):1932-49.
  • 14. Shankar K, Kumar D, Gupta S, Varshney S, Rajan S, Srivastava A, et al. Role of brown adipose tissue in modulating adipose tissue inflammation and insulin resistance in high-fat diet fed mice. Eur J Pharmacol. 2019;854:354-64.
  • 15. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2012;123(1).
  • 16. Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes. 2012;61(3):674-82.
  • 17. Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26.
  • 18. Payab M, Abedi M, Heravani NF, Hadavandkhani M, Arabi M, Tayanloo-Beik A, et al. Brown adipose tissue transplantation as a novel alternative to obesity treatment: A systematic review. Int J Obes. 2020:1-13.
  • 19. Chen L, Wang L, Li Y, Wuang L, Liu Y, Pang N, et al. Transplantation of normal adipose tissue improves blood flow and reduces inflammation in high fat fed mice with hindlimb ischemia. Front Physiol. 2018;9:197.
  • 20. Wu R, Liu X-m, Sun J-g, Chen H, Ma J, Dong M, et al. DJ-1 maintains energy and glucose homeostasis by regulating the function of brown adipose tissue. Cell Discov. 2017;3(1):1-18.
  • 21. Liu X, Wang S, You Y, Meng M, Zheng Z, Dong M, et al. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinol. 2015;156(7):2461-9.
  • 22. Morton JM, Shah SN, Wolfe BM, Apovian CM, Miller CJ, Tweden KS, et al. Effect of vagal nerve blockade on moderate obesity with an obesity-related comorbid condition: The ReCharge study. Obes Surg. 2016;26(5):983-9.
  • 23. Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol. 2017;8:665.
  • 24. Ueno H, Nakazato M. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation. J Diabetes Investig. 2016;7(6):812-8.
  • 25. Hwang SS, Takata MC, Fujioka K, Fuller W. Update on bariatric surgical procedures and an introduction to the implantable weight loss device: The Maestro Rechargeable System. Med Devices (Auckl). 2016;9:291.
  • 26. Dockray G, Burdyga G. Plasticity in vagal afferent neurones during feeding and fasting: Mechanisms and significance. Acta Physiol. 2011;201(3):313-21.
  • 27. de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol. 2016;594(20):5791-815.
  • 28. Raybould HE. Gut chemosensing: Interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 2010;153(1-2):41-6.
  • 29. Sarr MG, Billington CJ, Brancatisano R, Brancatisano A, Toouli J, Kow L, et al. The EMPOWER study: Randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes Surg. 2012;22(11):1771-82.
  • 30. Apovian CM, Shah SN, Wolfe BM, Ikramuddin S, Miller CJ, Tweden KS, et al. Two-year outcomes of vagal nerve blocking (VBloc) for the treatment of obesity in the ReCharge trial. Obes Surg. 2017;27(1):169-76.
  • 31. Papasavas P, El Chaar M, Kothari SN. American Society for Metabolic and Bariatric Surgery position statement on vagal blocking therapy for obesity. Surg Obes Relat Dis. 2016;12(3):460-461.
  • 32. U.S. Food and Drug Administration. Summary of Safety and Effectiveness Data (SSED): Maestro Rechargeable System. Available at: http://www.accessdata.fda.gov/ cdrh_docs/pdf13/P130019B.pdf. Accessed August 18, 2020.
  • 33. Herrera MF, Burton DD, Pantoja JP, Sanchez- Leenheer S, Bachmann B, Valdovinos MA, et al. M1268 intermittent vagal blocking with an implantable device reduces Maximum Tolerated Volume (MTV) during a standardized nutrient drink test in obese subjects. Gastroenterol. 2009;136(5):A-386.
  • 34. Shikora SA, Toouli J, Herrera MF, Kulseng B, Brancatisano R, Kow L, et al. Intermittent Vagal Nerve Block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes Surg. 2016;26(5):1021-8.
  • 35. Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: The ReCharge randomized clinical trial. JAMA. 2014;312(9):915-22.
  • 36. Shikora SA, Wolfe BM, Apovian CM, Anvari M, Sarwer DB, Gibbons RD, et al. Sustained weight loss with vagal nerve blockade but not with sham: 18-month results of the ReCharge Trial. J Obes. 2015;2015:365604.