Diyabette Hiperglisemi Kaynaklı Oksidatif Stresin Moleküler Mekanizması

Diyabet tüm dünyada görülme sıklığı giderek artan kronik endokrin bir metabolizma bozukluğudur. Diyabetin ve komplikasyonlarının gelişiminden, artan kan glukoz düzeyinin sonucu olarak ortaya çıkan oksidatif stres sorumlu tutulmaktadır. Organizma oksidan moleküller ve onları ortadan kaldıran antioksidan savunma sistemi arasındaki dengeyi korumaya eğilimlidir. Ancak reaktif oksijen ve nitrojen türlerinin üretimi ve nötralizasyonu arasındaki dengenin bozulup, antioksidan kapasitenin yetersiz kalması sonucu oksidatif stres ortaya çıkmaktadır. Diyabette gelişen hiperglisemiye bağlı olarak glikoliz, hekzosamin, polyol gibi çeşitli metabolik yolakların diyabetli bireylerde aşırı aktivite gösterdiği ve prooksidatif süreci başlattığı belirtilmektedir. Bu metabolik yolaklarda üretilen ürünler tek başına oksidasyonu arttırabildiği gibi diğer yolaklar ve ara ürünlerle de etkileşime girerek oksidatif dengeyi bozmaktadır. Bu derlemede diyabette hiperglisemiye bağlı gelişen oksidatif stresin moleküler düzeydeki nedenleri özetlenmiştir.

The Molecular Mechanism of Hyperglycemia Induced Oxidative Stress in Diabetes

Diabetes is a chronic endocrine metabolic disorder that is increasingly common all over the world. Oxidative stress as a result of increased blood glucose levels is held responsible for the development of diabetes and complications. The organism tends to maintain the balance between oxidant molecules and the antioxidant defense system that eliminates them. However, oxidative stress occurs as the balance between the production and neutralization of reactive oxygen and nitrogen species has deteriorated, and insufficient antioxidant capacity. It is stated that various metabolic pathways such as glycolysis, hexosamine and polyol due to hyperglycemia developing in diabetes show excessive activity and initiate the prooxidative process in individuals with diabetes. The products produced in these metabolic pathways alone can increase oxidation, as well as interfere with other pathways and intermediates, disrupting the oxidative balance. In this review, molecular causes of oxidative stress due to hyperglycemia in diabetes are summarized.

___

  • 1. American Diabetes Association. Standards of medical care in diabetes-2019 Abridged for primary care providers. Diabetes Care. 2019;42 (Suppl 1):14-80.
  • 2. International Diabetes Federation (IDF). IDF Diabetes Atlas (9th ed) 2019. Available at: http://www. diabetesatlas.org/ Accessed: September 3, 2020.
  • 3. Satman I, Omer B, Tutuncu Y, Kalaca S, Gedik S, Dinccag N, et al. Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults. Eur J Epidemiol. 2013;28(2):169-80.
  • 4. Türkiye Kronik Hastalıklar ve Risk Faktörleri Sıklığı Çalışması-2013, Sağlık Bakanlığı Yayın No: 909, Ankara, 2013.
  • 5. Abudawood M, Tabassum H, Almaarik B, Aljohi A. Interrelationship between oxidative stress, DNA damage and cancer risk in diabetes (Type 2) in Riyadh, KSA. Saudi J Biol Sci. 2020;27(1):177-83.
  • 6. Heidari F, Rabizadeh S, Rajab A, Heidari F, Mouodi M, Mirmiranpour H, et al. Advanced glycation end products and advanced oxidation protein products levels are correlates of duration of type 2 diabetes. Life Sci. 2020;260:118422.
  • 7. Poljšak B, Fink R. The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxid Med Cell Longev. 2014;2014:671539.
  • 8. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-72.
  • 9. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592-607.
  • 10. Naviaux RK. Oxidative shielding or oxidative stress? J Pharmacol Exp Ther. 2012;342(3):608-18.
  • 11. Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc Diabetol. 2005;4(1):5.
  • 12. An X, Sun X, Yang X, Liu D, Hou Y, Chen H, et al. Oxidative stress promotes ventilator-induced lung injury through activating NLRP3 inflammasome and TRPM2 channel. Artif Cells Nanomed Biotechnol. 2019;47(1):3448-55.
  • 13. Neelofar K, Arif Z, Arafat MY, Alam K, Ahmad J. A study on correlation between oxidative stress parameters and inflammatory markers in type 2 diabetic patients with kidney dysfunction in north Indian population. J Cell Biochem. 2019;120(4):4892-902.
  • 14. Halliwell B, Gutteridge JM. Oxygen: boon yet bane introducing oxygen toxicity and reactive species. Free radicals in biology and medicine. 5th ed. USA: Oxford University Press; 2015. 1-25 p.
  • 15. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. J Biochem Cell Biol. 2007;39(1):44-84.
  • 16. Wang J, Wang S. Reactive species in advanced oxidation processes: Formation, identification and reaction. Chem Eng J. 2020:126158.
  • 17. Preiser JC. Oxidative stress. JPEN J Parenter Enteral Nutr. 2012;36(2):147-54.
  • 18. Quinlan CL, Gerencser AA, Treberg JR, Brand MD. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem. 2011;286(36):31361-72.
  • 19. Bleier L, Dröse S. Superoxide generation by complex III: From mechanistic rationales to functional consequences. Biochim Biophys Acta Biomembr. 2013;1827(11-12):1320-31.
  • 20. Rasmussen M, Abdellaoui S, Minteer SD. Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron. 2016;76:91-102.
  • 21. Schröder K. NADPH oxidases in bone homeostasis and osteoporosis. Cell Mol Life Sci. 2015;72(1):25-38.
  • 22. Macit S, Akbulut G. Diabetes Mellitus ve Oksidatif Stres. Bes Diy Der. 2015;43(1):59-65.
  • 23. Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biology. 2020:101550.
  • 24. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334-43.
  • 25. Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta Biomembr. 2014;1840(9):2709-29.
  • 26. Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? J Cell Biochem. 2017;118(11):3577-85.
  • 27. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567-75.
  • 28. Tiwari BK, Pandey KB, Abidi A, Rizvi SI. Markers of oxidative stress during diabetes mellitus. J Biomark. 2013;2013.
  • 29. Makino A, Scott B, Dillmann W. Mitochondrial fragmentation and superoxide anion. production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia. 2010;53(8):1783-94.
  • 30. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, et al. Inhibition of GAPDH activity by poly (ADP ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Investig. 2003;112(7):1049-57.
  • 31. Easterday A, Keil N, Subramaniam R. Mechanism of inhibition of glyceraldehyde‐3‐phosphate dehydrogenase activity by glucose. The FASEB Journal. 2007;21(6):A1015-A1015.
  • 32. Steinberg SF. Structural basis of protein kinase C isoform function. Physiol Rev. 2008;88(4):1341-78.
  • 33. Massart J, Zierath JR. Role of diacylglycerol kinases in glucose and energy homeostasis. Trends Endocrinol Metab. 2019;30(9):603-17.
  • 34. Parmaksiz I. Advanced glycation end-products in complications of diabetes mellitus. Marmara Med J. 2011;24:141-8.
  • 35. Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother. 2018;108:656-62.
  • 36. Beyer AM, Weihrauch D. Hexosamine pathway activation and O-linked-N-acetylglucosamine: Novel mediators of endothelial dysfunction in hyperglycemia and diabetes. Vascul Pharmacol. 2012;56(3-4):113.
  • 37. Rabbani N, Thornalley PJ. Glycation-and/or Polyol Pathway-Inducing Complications. Huhtaniemi I, editor. 2nd ed. Cambridge: Massachusetts, Academic Press; 2018. 170-179 p.
  • 38. Pole A, Dimri M, Dimri GP. Oxidative stress, cellular senescence and ageing. AIMS Molecular Science 2016;3(3):300-24.
  • 39. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247-60.
  • 40. Matschinsky FM, Wilson DF. The central role of glucokinase in glucose homeostasis: A perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front Physiol. 2019;10:148.
Beslenme ve Diyet Dergisi-Cover
  • ISSN: 1300-3089
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1972
  • Yayıncı: Türkiye Diyestisyenler Derneği