Fen Bilimleri Öğretmen Adaylarının İnformal Muhakeme Biçimleri ve Sosyobilimsel Muhakeme Yeterlikleri: Hidrolik Kırılma ve Doğal Koruma Alanlarının Yönetimi Senaryoları

Bu çalışmanın amacı, fen bilimleri öğretmen adaylarının hidrolik kırılma ve doğal koruma alanlarının yönetimi konularına ilişkin informal muhakeme biçimlerini ve sosyobilimsel muhakeme yeterliklerini araştırmaktır. Betimsel araştırma yönteminin kullanıldığı bu çalışmada, hem nitel hem de nicel veriler elde edilmiştir. Katılımcılar farklı öğrenim düzeylerinden 46 fen bilimleri öğretmen adayıdır. Veriler, Açık Uçlu İnformal Muhakeme Anketi ve İki Aşamalı Sosyobilimsel Muhakeme Testi kullanılarak elde edilmiştir. Sonuçlara göre, katılımcılar, farklı iki senaryo bağlamında farklı informal muhakeme biçimleri geliştirmişler, hidrolik kırılma senaryosu bağlamında sosyal, ekoloji, ekonomi, bilim ve/veya teknoloji, risk ve politik odaklı argümanlar geliştirirken, doğal koruma alanlarının yönetimi senaryosu bağlamında sosyal, ekoloji, ekonomi ve risk odaklı argümanlar geliştirmişlerdir. Her iki senaryoda da en yüksek ortalamaya sahip olan informal muhakeme biçimi ekoloji odaklı argümanlar olmuştur. Sosyobilimsel muhakeme yeterliklerine ilişkin olarak, hidrolik kırılma senaryosu bağlamında en yüksek yeterlik karmaşıklık boyutunda elde edilirken, doğal koruma alanlarının yönetimi senaryosu için en yüksek yeterlik çoklu perspektifler boyutunda elde edilmiştir. Her iki senaryo bağlamında da en düşük yeterlik sürmekte olan araştırmalara tabi olmak boyutunda elde edilmiştir. Her iki senaryo birlikte düşünüldüğünde katılımcıların yalnızca çoklu perspektifler boyutunda orta düzey yeterliğe ulaştığı, diğer tüm boyutlarda düşük düzey yeterlik gösterdikleri görülmüştür. Bulgular doğrultusunda öğretmen eğitimi literatürü ve sınıf içi uygulamalara yönelik öneriler yapılmıştır.

Preservice Science Teachers’ Informal Reasoning Modes And Socioscientific Reasoning Competencies: Hydraulic Fracking And Land Management Scenarios

The purpose of this study was to examine preservice science teachers’ informal reasoning modes and socioscientific reasoning competencies regarding hydraulic fracking and land management issues. In this descriptive research, both qualitative and quantitative data were obtained. Participants of the study were 46 preservice science teachers from different grade levels. Data were obtained by using Open-Ended Informal Reasoning Questionnaire and The Quantitative Assessment of SSR. Findings of the study revealed that the participants generated different reasoning modes for both scenarios. For hydraulic fracking issue, the participants generated social, ecology, economy, science and/or technology, risk and political oriented arguments while they generated social, ecology, economy and risk oriented arguments for the land management issue. For both scenarios, the most frequent reasoning mode was the ecology oriented arguments. Regarding socioscientific reasoning competencies, the participants scored highest on the complexity dimension for hydraulic fracking issue and on the multiple perspectives for land management issue. Moreover, the participants scored lowest on the inquiry dimension for both scenario. Considering the two scenarios, the participants displayed low level of competency for all the dimensions except for the multiple perspectives dimension. They displayed moderate level of competency for multiple perspectives dimension. Implications for teacher education and practice were provided.

___

  • Beck, J., Czerniak, C. M., & Lumpe, A. T. 2000 . An exploratory study of teachers' beliefs regarding the implementation of constructivism in their classrooms. Journal of Science Teacher Education, 11 4 , 323– 343.
  • Cebesoy, U. B., & Chang-Rundgren, S. N. 2021 . Embracing socioscientific issues-based teaching and decision- making in teacher professional development. Educational Review. doi: 10.1080/00131911.2021.1931037
  • Cerbin, B. 1988 . The nature and development of informal reasoning skills in college students. Paper presented at the national institute on issues in teaching and learning, Chicago, IL.
  • Chang-Rundgren, S. N., & Rundgren, C. J. 2010 . SEE-SEP: From a separate to a holistic view of socioscientific issues. Asia-Pacific Forum on Science Learning & Teaching, 11 1 , 1–24.
  • Christenson, N., Chang-Rundgren, S. N., & Höglund, H. O. 2012 . Using the see-sep model to analyze upper secondary students’ use of supporting reasons in arguing socioscientific issues. Journal of Science Education and Technology, 21, 342–352.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. 2012 . How to design and evaluate research in education 8th ed. . New York, NY: McGraw–Hill.
  • Glaser, B. G., & Strauss, A. L. 1967 . The discovery of grounded theory. Chicago: Aldine.
  • Irmak, M. 2020 . Socioscientific reasoning competencies and nature of science conceptions of undergraduate students from different faculties. Science Education International, 31 1 , 65–73.
  • Kaplan, R. M., & Saccuzzo, D. P. 2009 . Psychological testing: Principles, applications, and issues 7th ed. . Belmont, CA: Wadsworth.
  • Karisan, D., & Cebesoy, U. B. 2021 . Use of the SEE-SEP model in pre-service science teacher education: The case of genetics dilemmas. In W. A. Powell Ed. , Socioscientific issues-based instruction for scientific literacy development pp. 223–254 . IGI Global.
  • Kazempour, M. 2009 . Impact of inquiry-based professional development on core conceptions and teaching practices: A case study. Science Educator, 18 2 , 56–68.
  • Khishfe, R., & Lederman, N. 2006 . Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching, 43 4 , 395–418.
  • Lee, H., Lee, H., & Zeidler, D. L. 2019 . Examining tensions in the socioscientific issues classroom: Students' border crossings into a new culture of science. Journal of Research in Science Teaching, 57 5 , 97–117.
  • Lee, Y. C., & Grace, M. 2012 . Students’ reasoning and decision making about a socioscientific ıssue: A cross- context comparison. Science Education, 96 5 , 787–807.
  • Lincoln, Y. S., & Guba, E. G. 1985 . Naturalistic inquiry. Newbury Park, CA: Sage Publications.
  • Lumpe, A. T., Haney, J. J., & Czerniak, C. M. 2000 . Assessing teachers’ beliefs about their science teaching context. Journal of Research in Science Teaching, 37 3 , 275–292.
  • Merriam, S. B. 1998 . Qualitative research and case study applications in education 2nd ed. . San Francisco: Jossey-Bass Publishers.
  • Milli Eğitim Bakanlığı 2013 . İlköğretim kurumları ilkokullar ve ortaokullar fen bilimleri dersi 3, 4, 5, 6, 7 ve 8. siniflar öğretim programı. Ankara-Türkiye.
  • Milli Eğitim Bakanlığı 2018 . Fen bilimleri dersi öğretim programı İlkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar . Ankara-Türkiye.
  • Namdar, B., Aydin, B., & Raven, S. 2020 . Preservice science teachers’ ınformal reasoning about hydroelectric power ıssue: The effect of attitudes towards socio-scientific issues and media literacy. International Journal of Research in Education and Science, 6 4 , 2148–9955.
  • Owens, D. C., Herman, B. C., Oertli, R. T., Lannin, A. A., & Sadler, T. D. 2019 . Secondary science and mathematics teachers’ environmental issues engagement through socioscientific reasoning. Eurasia Journal of Mathematics, Science and Technology Education, 15 6 , 1–27.
  • Ozturk, N., & Yilmaz-Tuzun, O. 2017 . Preservice science teachers’ epistemological beliefs and informal reasoning regarding socioscientific issues. Research in Science Education, 47 6 , 1275–1304.
  • Öztürk, N., & Erabdan, H. 2019 . The perception of science teachers on socio-scientific issues and teaching them. International Online Journal of Education and Teaching, 6 4 , 960–982.
  • Patton, M. Q. 1990 . Qualitative evaluation and research methods 2nd ed. . Sage Publications, Inc.
  • Romine, W. L., Sadler, T. D., & Kinslow, A. T. 2017 . Assessment of scientific literacy: Development and validation of the quantitative assessment of socio-scientific reasoning QuASSR . Journal of Research in Science Teaching, 54 2 , 274–295.
  • Romine, W. L., Sadler, T. D., Dauer, J. M., & Kinslow, A. T. 2020 . Measurement of socio-scientific reasoning SSR and exploration of SSR as a progression of competencies. International Journal of Science Education, 42 18 , 2981–3002.
  • Sadler, T. D. 2004 . Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41 5 , 513–536.
  • Sadler, T, D., Amirshokoohi, A., Kazempour, M., & Allspaw, K. M. 2006 . Socioscience and ethics in science classrooms: teacher perspectives and strategies. Journal of Research in Science Teaching, 43 4 , 353–376.
  • Sadler, T. D., Barab, S. A., & Scott, B. 2007 . What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37 4 , 371–391.
  • Sadler, T. D., Klosterman, M. L., & Topcu, M. S. 2011 . Learning science content and socio-scientific reasoning through classroom explorations of global climate change. In T. D. Sadler Ed. . Socio-scientific Issues in the Classroom: Teaching, Learning, and Research pp. 45–77 . New York: Springer.
  • Sadler, T .D., & Zeidler, D. L. 2005 . Patterns of informal reasoning in the context of socioscientific decision making, Journal of Research in Science Teaching, 42 1 , 112–138.
  • Topcu, M. S., Sadler, T. D., & Yilmaz-Tüzün, O. 2010 . Pre-service science teachers’ informal reasoning about socioscientific issues: The influence of issue context. International Journal of Science Education, 32 18 , 2475–2495.
  • Tuncay, B., Yilmaz-Tuzun, O., & Tuncer-Teksoz, G. 2012 . Moral reasoning patterns and influential factors in the context of environmental problems. Environmental Education Research, 18 4 , 485–505.
  • Venville, G. J., & Dawson, V. M. 2010 . The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47 8 , 952–977.
  • Walker, K. A., & Zeidler, D. L. 2007 . Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29 11 , 1387–1410.
  • Wu, Y. T., & Tsai, C. 2007 . High school students’ informal reasoning on a socioscientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29 9 , 1163–1187.
  • Wu, Y. T., & Tsai, C. C. 2011 . High school students’ informal reasoning regarding a socioscientific issue, with relation to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33 3 , 371–400.
  • Yager, S. O., Lim, G., & Yager, R. 2006 . The advantages of an STS approach over a typical textbook dominated approach in middle school science. School Science and Mathematics, 106 1 , 248–260.
  • Yang, F. Y., & Anderson, O. R. 2003 . Senior high school students’ preference and reasoning modes about nuclear energy use. Journal of Science Education, 25 2 , 221–224.
  • Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. 2005 . Beyond STS: A research‐based framework for socioscientific issues education. Science Education, 89 3 , 357–377.
  • Zeidler, D. L., & Keefer, M. 2003 . The role of moral reasoning and the status of socioscientific issues in science education. In D. L. Zeidler Ed. , The role of moral reasoning in socioscientific issues and discourse in science education, Dordrecht, The Netherlands: Kluwer Academie, 7–40.
  • Zohar, A., & Nemet, F. 2002 . Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39 1 , 35–62.