Biyohidrojen Üretim Sistemlerinde Oluşan Gaz Karışımından Hidrojenin Saflaştırılması

Biyolojik olarak üretilen gaz karıșımı direkt kullanım için uygun değildir. Çünkü hidrojenin derișimi yakıt hücrelerindeki uygulamalar için yeterli derecede yüksek değildir. Biyogaz karıșımı H2 yanında N2 (bașlangıç așamasında anaerobik șartları sağlar) ve CO de içerir. Bu yüzden gaz karıșımından hidrojen geri kazanılmalı ve deriștirilmelidir. Kimyasal absorpsiyon prosesi, basınç salınımlı adsorpsiyon prosesi, membram sistemler ve membran kontaktör sistemi gerikazanım ve deriștirme ișlemlerinde kullanılabilir. Bu makalede genel olarak gaz arıtım sistemleri verildi

Purification Of Hydrogen From Gaseous Mixture Produced From Biohydrogen Production System

Gaseous mixture produced by a biologically is not suitable for direct utilization. Because the concentration of hydrogen is not high enough for application in fuel cells. Biogas mixture contains N2 (to ensure anaerobic conditions initially) and CO2 beside H2. Therefore hdrogen from the gaseous mixture must be recovered and concentrated. Chemical absorption processes, pressure swing adsorption processes, membrane systems and membrane contactor system can be used in the recover and concentrate. In the paper an overview of common gas purification systems is given

___

[1] Lopes, F.V.S., Grande, C.A., Rodrigues, A.E., Activated carbon for hydrogen purification by pressure swing adsorption: Multicomponent breakthrough curves and PSA performance, Chemical Engineering Science, 66, 303-317, (2011).

[2] Verweij, H., Lin, Y.S., Dong, J.H., Microporous silica and zeolite membranes for hydrogen purification, MRS Bulletin, 31, 756-764, (2006).

[3] Modigell, M., Schumacher, M., Teplyakov, V.V., Zenkevich, V.B., A membrane contactor for efficient CO2 removal in biohydrogen production, Desalination, 224, 186-190, (2008).

[4] Beggel, F., Nowik, I.J., Modigell, M., Shalygin, M.G., Teplyakov V.V., Zenkevitch, V.B., A novel gas purification system for biologically produced gases, Journal of Cleaner Production, 18, S43-S50, (2010).

[5] Alonso-Vicario, A., Ochoa-Gómez, J.R., Gil-Río, S., Gómez-Jiménez-Aberasturi, O., Ramírez-López, C.A., Torrecilla-Soria, J., Domínguez, A., Purification and

upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites, Microporous and Mesoporous Materials, 134, 100-107, (2010).

[6] Tagliabue, M., Delnero, G., Optimization of a hydrogen purification system, International Journal of Hydrogen Energy, 33, 3496-3498, (2008).

[7] Sircar, S., Golden, T.C., Purification of Hydrogen by Pressure Swing Adsorption, Separation Science and Technology, 35:5, 667-687, (2000).

[8] Baston-Neto, M., Moeller, A., Staudt, R., Böhm, J., Gläser, R., Dynamic bed measurements of CO adsorption on microporous adsorbents at high pressures for hydrogen purification processes, Separation Science and Technology, 77, 251- 260, (2011).

[9] Yang, S., Choi, D.Y., Jang, S.C., Kim, S.H., Choi, D.K., Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas, Adsorption, 14, 583-590, (2008).

[10] İlkılıç, C, Deviren, H., Biyogazın olușumu ve biyogazı saflaștırma yöntemleri, 6 th International Advanced Technologies Symposium, 16-18 May 2011, Elazığ, Turkey.

[11] Öztürk, M., Özek, N., Yüksel, Y. E., Doğalgazdan hidrojen üretilmesi ve salınan karbon dioksitin tutulması, SDÜ, International Technologic Sciences, 2(2), 1- 13, (2010).

[12] Fukushima, Y., Huang, Y.J., Chen, J.W., Lin, H.C., Whang L.M., Chu, H., Lo, Y.C., Chang, J.S., Material and energy balances of an integrated biological hydrogen production and purification system and their implications for its potential to reduce greenhouse gas emissions, Bioresource Technology, 102, 8550-8556, 2011.

[13] Car, A., Stropnik, C., Yave, W., Peinemann K.V., Pebax®/ polyethyylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases, Separation and Purification Technology, 62, 110-117, (2008).

[14] Lu, G.Q., Diniz da Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H., Kreutz, T., Inorganic membranes for hydrogen production and purification: A critical review and perspective, Journal of Colloidal and Interface Science, 314, 589-603, (2007).

[15] Búcsú, D., Nemestóthy, N., Pientka, Z., Gubicza, L., Bélafi-Bakó, K., Modelling of biohydrogen production and recovery by membrane gas separation, Desalination, 240, 306-310, (2009).

[16] Vijay, Y.K., Acharya, N.K., Wate, S., Avasthi, D.K., Nanofilter for hydrogen purification, International Journal of Hydrogen Energy, 28, 1015-1018, (2003).

[17] Ling, C., Semidey-Flecha, L., Sholl, D.S., First-principles screening of PdCuAg ternary alloys as H2 purification membranes, Journal of Membrane Science, 371, 189-196, (2011).

[18] Hwang, K.J., Ryi, S.K., Lee, C.B., Lee, S.W., Park, J.S., Simplified, plate-type Pd membrane modüle for hydrogen purification, 36, 10136-10140, 2011.

[19] Neves, L.A., Nemestóthy, N., Alves V.D., Cserjési, P., Bélafi-Bakó, K., Coelhoso, I.M., Separation of biohydrogen by supported ionic liquid membranes, Desalination, 240, 311-315, (2009).

[20] Búcsú, D., Pientka, Z., Kovács, S., Bélafi-Bakó, K., Biohydrogen recovery and purification by gas separation method, Desalination, 200, 227-229, (2006).

[21] Horváth, R., Orosz, T., Wessling, M., Koops, G.H., Kapantaidakis, G.C., BélafiBakó, K., Application of gas separation to recover biohydrogen produced by Thiocapsa roseopersicina, Desalination, 163, 261-265, (2004).

22] Teplyakov, V.V., Gassanova, L.G., Sostina, E.G., Slepova E.V., Modigell, M., Netrusov, A.I., Lab-scale bioreactor integrated with active membrane system for hydrogen production: experience and prospects, International Journal of Hydrogen Energy, 27, 1149-1155, (2002).

[23] Ockwing, N. W., Nenoff, T. M., Membranes for Hydrogen Separation, Chem. Rev., 107, 4078-4110, (2007).