Yoğunluk Fonksiyonel Teorisi ile Kontrast Madde Iomeprol Üzerinde Çözücü Etkileri

Kontrast maddeleri veya kontrast madde olarak da adlandırılan kontrast bileşikleri, X-ışınlarının veya diğer görüntüleme araçlarınınvücutla etkileşimini geçici olarak değiştiren maddelerdir. Iomeprol, noniyonik bir monomerik iyotlu kontrast ortamıdır. Iomeprol'üngaz fazında ve farklı çözeltilerde (kloroform, asetik asit, etanol, DMF, DMSO ve su) optimize olmuş geometrileri, HOMO-LUMOenerjisi, enerji aralığı, global kimyasal indeksler, toplam enerji, doğrusal olmayan optik ve Doğal Bağ Orbital (NBO) analiziYoğunluk Fonksiyonel Teorisi kullanılarak B3LYP/lanl2dz temel seti ile elde edildi. Optimize edilmiş ve bazı kimyasal parametreler(sertlik, elektronegatiflik, elektrofiliklik indeksi, nükleojenite,..) üzerinde çözücülerin bir etkiye sahip olduğu görülmüştür. Çözücüdielektrik sabitinin artmasıyla EHOMO değerlerinin daha negatif ve ELUMO değerlerinin daha pozitif olduğu gözlenmiştir. Iomeprolün sufazında en yüksek stabiliteye sahip, daha sert ve daha az reaktif olduğu bulunmuştur. Ayrıca NBO analizinde, alıcı ve vericielektronları arasındaki etkileşim, çözücünün dielektrik sabitinden etkilenmiştir.

Solvent Effects on the Contrast Agent Iomeprol with DensityFunctional Theory

Contrast compounds, also called contrast agents or contrast media are substances that temporarily change the way X-rays or otherimaging tools interact with the body. Iomeprol is a nonionic monomeric iodinated contrast medium. Optimized geometries ofIomeprol, HOMO-LUMO energy, energy gap, global chemical indices, total energy, nonlinear optical and Natural Bond Orbital(NBO) analysis in the gas phase and in solvents (chloroform, acetic acid, ethanol, DMF, DMSO and water) were obtained based onDensity Functional Theory with B3LYP/lanl2dz basis set. The results revealed that the solvents have an effect on the optimized andsome chemical parameters (hardness, electronegativity, electrophilicity index, nucleofugality,..). It was observed EHOMO valuesbecome more negative and ELUMO values become more positive due to the increase dielectrical constant of the solvent. It wasobserved that Iomeprol had a highest stability, harder and less reactive in the water phase. In the NBO analysis, interaction betweendonor and acceptor electrons was effected with the dielectric constant of the solvent.

___

  • [1] Singh, J., & Daftary, A. (2008). Iodinated contrast media and their adverse reactions. Journal of nuclear medicine technology, 36(2), 69-74.
  • [2] Almen, T. (1994). The etiology of contrast medium reactions. Investigative radiology, 29, S37-S45.
  • [3] Dooley, M., & Jarvis, B. (2000). Iomeprol. Drugs, 59(5), 1169-1186.
  • [4] Lorusso V, Taroni P, Alvino S, Sipinazzi A. (2001). Pharmacokinetics and safety of iomeprol in healthy volunteers and in patients with renal impairment or endstage renal disease requiring hemodialysis. Investigative radiology, 36(6), 309-316.
  • [5] Rosati, G. (1994). Clinical pharmacology of iomeprol. European journal of radiology, 18, S51-S60.
  • [6] Fattori, R., Piva, R., Schicchi, F., Pancrazi, A., Gabrielli, G., Marzocchi, A., ... & Magnani, B. (1994). Iomeprol and iopamidol in cardiac angiography: a randomised, doubleblind, parallel-group comparison. European journal of radiology, 18, S61-S66.
  • [7] Rosati, G. (1994). Clinical utility and safety profile of iomeprol. European journal of radiology, 18, S120-S124.
  • [8] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian09 Revision D. 01, Gaussian Inc. Wallingford CT (2009)
  • [9] Dennington, R., Keith, T., Millam, J.: GaussView, version 5 (2009).
  • [10] Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96(3), 2155-2160.
  • [11] Mekky, A. H., Elhaes, H. G., El-Okr M. M., Al-Aboodi, A. S., Ibrahim, M.A. (2015). Effect of Solvents on the Electronic Properties of Fullerene Based Systems : Molecular Modelling. Journal of Applied Computational. Mathematics 4(1),1–4.
  • [12] Kumer, A., Ahmed, B., Sharif, M. A., & Al-Mamun, A. (2017). A theoretical study of aniline and nitrobenzene by computational overview. Asian Journal of Physical and Chemical Sciences, 1-12.
  • [13] Srivastava, K. K., Srivastava, S., & Alam, M. T. (2014). Theoretical study of the effects of solvents on the ground state of TCNQ. Pelagia Res. Libr, 5(1), 288-295.
  • [14] Pegu, D. (2014). Solvent effects on nonlinear optical properties of novel para-nitroaniline derivatives: A density functional approach. Int. J. Sci. Res, 3(7), 469-474.
  • [15] Oyeneyin, O. E. (2017). Structural and Solvent Dependence of the Electronic Properties and Corrosion Inhibitive Potentials of 1,3,4-thiadiazole and Its Substituted Derivatives-A Theoretical Investigation. Phys. Sci. Int. J. 16(2),1-8.
  • [16] Khan, M. F., Rashid, R. B., Hossain, M. A., & Rashid, M. A. (2017). Computational study of solvation free energy, dipole moment, polarizability, hyperpolarizability and molecular properties of Betulin, a constituent of Corypha taliera (Roxb.). Dhaka University Journal of Pharmaceutical Sciences, 16(1), 1-9.
  • [17] Abdulaziz, H., Gidado, A. S., Musa, A., & Lawal, A. (2019). Electronic Structure and Non-Linear Optical Properties of Neutral and Ionic Pyrene and Its Derivatives Based on Density Functional Theory. Journal of Materials Science Research and Reviews, 1-13.
  • [18] Sert, Y., Gümüş, M., Gökce, H., Kani, İ., Koca, İ. (2018).Molecular docking, Hirshfeld surface, structural, spectroscopic, electronic, NLO and thermodynamic analyses on novel hybrid compounds containing pyrazole and coumarin cores. Journal of Molecular Structure, 1171, 850- 866.
  • [19] Prasad, P. N. (1991). Williams; DJ Introduction to Nonlinear Optical Effects in Organic Materials and Polymers.
  • [20] Machado, A. E., Neto, N. M., Ueno, L. T., de Paula, L. F., Araújo, D. M., Oliveira, G. S., ... & Oliveira-Campos, A. M. (2008). Study of the spectroscopic properties and first hyperpolarizabilities of disperse azo dyes derived from 2- amino-5-nitrothiazole. Journal of Photochemistry and Photobiology A: Chemistry, 199(1), 23-33.
  • [21] Kanis, D. R., Ratner, M. A., & Marks, T. J. (1994). Design and construction of molecular assemblies with large secondorder optical nonlinearities. Quantum chemical aspects. Chemical Reviews, 94(1), 195-242.
  • [22] Snehalatha, M., Ravikumar, C., Joe, I. H., Sekar, N., & Jayakumar, V. S. (2009). Spectroscopic analysis and DFT calculations of a food additive Carmoisine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(3), 654-662.
  • [23] Rui-Zhou, Z., Xiao-Hong, L., Xian-Zhou, Z. (2011). Molecular Structure, Vibrational Spectra and NBO Analysis on 1N-acetyl-3-(2, 4dichloro-5-fluoro-phenyl)-5-(p-methylphenyl)-2-pyrazoline Using DFT Method. Indian Journal of Pure&Applied Physics. 49(11),731-9.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç