Bazı Doğal Bileşikler ve Benzentiyol ile Polifenol Oksidaz İnhibisyonu Yoluyla Enzimatik Kararmanın Önlenmesi

Arkaplan: Taze kesilmiş sebzeler ve meyveler, son yıllarda tüketicilerin taze sebzelerin ve meyvelerin sağlık yararları konusundakifarkındalığının artması ve hazır gıda talebinin artması nedeniyle popüler hale gelmiştir. Önemli bir endişe, taze kesilmiş ürünlerin renk,tat ve dokusunda değişikliklere yol açabilen ve bu nedenle kalite bozulması ile ilişkili enzimatik esmerleşmedir. Taze kesilmiş ürünlerinraf ömrünü uzatmak için fiziksel ve kimyasal temelli anti-esmerleşme yöntemleri dikkat çekicidir. Bu çalışmada, enzimatikesmerleşmeden sorumlu polifenol oksidaz (PPO) enzimi için inhibitörler önerilmiştir. Yöntem: İlk olarak patates, Sepharose 4B L-tirozin p-amino benzoik asit (Sepharose 4B L-tyr-p-ABA) afinite kromatografisi ilepolifenol oksidaz saflaştırılmasında enzim kaynağı olarak kullanıldı. Enzim saflığı SDS-PAGE ile kontrol edildi. Daha sonra, baicalin,bailcalein, phloridzin, phloretin doğal bileşikleri ve benzentiol sülfür bileşiğinin inhibisyon etkisi araştırıldı. Sonuçlar: PPO, patatesden % 13.94 kat saflaştırıldı. İnhibisyon çalışmalarında phloridzin, phloretin ve benzenethiol'ün Ki değerlerisırasıyla 0.120 ± 0.0157, 0.027 ± 0.0054, 0.008 ± 0.0014 mM olarak belirlenmiştir. Sonuçlarımıza göre, inhibisyon sırası aşağıdakigibidir: pholoridzin ˃ phloretin ˃ benzenethiol. Baicalin ve bailcalein bir inhibisyon etkisi göstermezken, phloridzin, phloretinyarşmasız, benzentiol yarışmalı inhibisyon gösterdi.

Prevention of Enzymatic Browning by Inhibiting Polyphenol Oxidase with Some Natural Compounds and Benzenethiol

Background: In recent years consumers' awareness of the health benefits of fresh vegetables and fruits have increased and demand forready-made food has increased. That's why, fresh cut vegetables and fruits have become a popular. An important concern in this processis enzymatic browning, which cause changes in the texture, taste, and color of freshly cut product. Physical and chemical-based anti browning methods to prolong the shelf life of freshly cut products are remarkable. In this study, it was aimed to prevent enzymaticbrowning via inhibition of polyphenol oxidase (PPO) enzyme. Method: Firstly, potato was used as the source of polyphenol oxidase and enzyme purified by affinity chromatography. Sepharose 4BL-tyrosine p-amino benzoic acid (Sepharose 4B L-tyr-p-ABA) was used as affinity column. SDS-PAGE was used to check enzymepurity. Then, the inhibition effect of baicalin, bailcalein, phloridzin, phloretin natural compounds and benzenthiol sulfur compound wereinvestigated.Results: PPO was purified with 13.94% fold from potato. In inhibition studies Ki values of phloridzin, phloretin and benzenethiol weredetermined as 0.120±0.0157, 0.027±0.0054, 0.008±0.0014 mM respectively. According to our results, the order of inhibition is asfollows: pholoridzin ˃ phloretin ˃ benzenethiol. While baicalin and bailcalein did not show any inhibition effect, phloridzin andphloretin showed non-competitive, benzentiol showed competitive inhibition.

___

  • Aksoy, M. (2020). A new insight into purification of polyphenol oxidase and inhibition effect of curcumin and quercetin on potato polyphenol oxidase. Protein Expr Purif, 171, 105612. doi:10.1016/j.pep.2020.105612
  • Arslan, O., Erzengin, M., Sinan, S., & Ozensoy, O. (2004). Purification of mulberry (Morus alba L.) polyphenol oxidase by affinity chromatography and investigation of its kinetic and electrophoretic properties. Food Chemistry, 88(3), 479- 484.
  • Bayrak, S., Öztürk, C., Demir, Y., Alım, Z., & Küfrevioglu, Ö. İ. (2020). Purification of Polyphenol Oxidase from Potato and Investigation of the Inhibitory Effects of Phenolic Acids on Enzyme Activity. Protein and Peptide Letters, 27(3), 187-192.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.
  • Bravo, K., & Osorio, E. (2016). Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit. Food Chemistry, 197(Pt A), 185-190. doi:10.1016/j.foodchem.2015.10.126
  • Bukhari, S. N. A., Jantan, I., Tan, O. U., Sher, M., Naeem-ulHassan, M., & Qin, H. L. (2014). Biological Activity and Molecular Docking Studies of Curcumin-Related alpha,betaUnsaturated Carbonyl-Based Synthetic Compounds as Anticancer Agents and Mushroom Tyrosinase Inhibitors. Journal of Agricultural and Food Chemistry, 62(24), 5538- 5547.
  • Chaves, I. R., Ferreira, E. D., Da Silva, M. A., & Neves, V. A. (2011). Polyphenoloxidase from Atemoya Fruit (Annona Cherimola Mill. Annona Squamosa L.). Journal of Food Biochemistry, 35(6), 1583-1592.
  • Chen, Q. X., & Kubo, I. (2002). Kinetics of mushroom tyrosinase inhibition by quercetin. J Agric Food Chem, 50(14), 4108- 4112. doi:10.1021/jf011378z
  • Duangmal, K., & Apenten, R. K. O. (1999). A comparative study of polyphenoloxidases from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chemistry, 64(3), 351-359.
  • Ehrenkranz, J. R. L., Lewis, N. G., Kahn, C. R., & Roth, J. (2005). Phlorizin: a review. Diabetes-Metabolism Research and Reviews, 21(1), 31-38.
  • ESKIN, N. A. M., HENDERSON, H.M. and TOWNSEND, R.J. . (1971.). Browning reactions in foods. In Biochemistry of Foods. New York: Academic Press.
  • Fan, M. H., Zhang, G. W., Hu, X., Xu, X. M., & Gong, D. M. (2017). Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Research International, 100, 226-233.
  • Flurkey, W. H. (1986). Polyphenoloxidase in higher plants: immunological detection and analysis of in vitro translation products. Plant Physiology, 81(2), 614-618.
  • Garro, A., & Gasull, E. (2010). Characterization of Polyphenoloxidase from 2 Peach (Prunus persica L.) Varieties Grown in Argentina. Food Science and Biotechnology, 19(3), 627-632.
  • Gonzalez, E. M., de Ancos, B., & Cano, M. P. (1999). Partial characterization of polyphenol oxidase activity in raspberry fruits. J Agric Food Chem, 47(10), 4068-4072. doi:10.1021/jf981325q
  • Hsu, A. F., Shieh, J. J., Bills, D. D., & White, K. (1988). Inhibition of Mushroom Polyphenoloxidase by Ascorbic-Acid Derivatives. Journal of Food Science, 53(3), 765-&.
  • Jiang, Y. M. (1999). Purification and some properties of polyphenol oxidase of longan fruit. Food Chemistry, 66(1), 75-79.
  • Kahn, V., Ben-Shalom, N., & Zakin, V. (1999). Effect of benzenesulfinic acid on the oxidation of o-dihydroxy and trihydroxyphenols by mushroom tyrosinase. Journal of Food Biochemistry, 23(3), 263-281.
  • Karasu, S., Durak, M.Z., Toker, Ö.S. (2015). Gıda Biyoteknolojisi ve Biyoproseslerinde Yeni Gelişmeler. European Journal of Science and Technology, 2( 5), 161-164.
  • Laemmli, D. K. (1970). Cleavage of structural proteins during in assembly of the head of bacteriophage T4. Nature, 227(5259), 680.
  • Lerch, K. (1987). Molecular and active site structure of tyrosinase. Life Chem. Rep., 5, 221-234.
  • Loizzo, M. R., Tundis, R., & Menichini, F. (2012). Natural and Synthetic Tyrosinase Inhibitors as Antibrowning Agents: An Update. Comprehensive Reviews in Food Science and Food Safety, 11(4), 378-398.
  • Lourenco, E. J., Neves, V. A., & Dasilva, M. A. (1992). Polyphenol Oxidase from Sweet-Potato - Purification and Properties. Journal of Agricultural and Food Chemistry, 40(12), 2369-2373.
  • Martinez, J. H., Solano, F., Penafiel, R., Galindo, J. D., Iborra, J. L., & Lozano, J. A. (1986). Comparative study of tyrosinases from different sources: relationship between halide inhibition and the enzyme active site. Comp Biochem Physiol B, 83(3), 633-636. doi:10.1016/0305-0491(86)90309-3
  • Martinez, M. V., & Whitaker, J. R. (1995). The Biochemistry and Control of Enzymatic Browning. Trends in Food Science & Technology, 6(6), 195-200.
  • Mayer, A. M. (2006). Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 67(21), 2318-2331.
  • McEvily, A. J., Iyengar, R., & Otwell, W. S. (1992). Inhibition of enzymatic browning in foods and beverages. Crit Rev Food Sci Nutr, 32(3), 253-273. doi:10.1080/10408399209527599
  • Mishra, B. B., Gautam, S., & Sharma, A. (2012). Purification and characterisation of polyphenol oxidase (PPO) from eggplant (Solanum melongena). Food Chemistry, 134(4), 1855-1861. doi:10.1016/j.foodchem.2012.03.098
  • Mishra, B. B., & Gautam, S. (2016). Polyphenol oxidases: biochemical and molecular characterization, distribution, role and its control. Enzyme Engineering, 5(1), 141-149.
  • Nagai, T., & Suzuki, N. (2001). Partial purification of polyphenol oxidase from Chinese cabbage Brassica rapa L. J Agric Food Chem, 49(8), 3922-3926. doi:10.1021/jf000694v
  • Negishi, O., & Ozawa, T. (2000). Inhibition of enzymatic browning and protection of sulfhydryl enzymes by thiol compounds. Phytochemistry, 54(5), 481-487. doi:10.1016/s0031-9422(00)00125-4
  • Öztürk, C., Aksoy, M., & Küfrevioglu, Ö. I. (2020). Purification of tea leaf (Camellia sinensis) polyphenol oxidase by using affinity chromatography and investigation of its kinetic properties. Journal of Food Measurement and Characterization, 14(1), 31-38.
  • Queiroz, C., Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2008). Polyphenol oxidase: Characteristics and mechanisms of browning control. Food Reviews International, 24(4), 361-375.
  • Saboury, A. A., Zolghadri, S., Haghbeen, K., & MoosaviMovahedi, A. A. (2006). The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase. J Enzyme Inhib Med Chem, 21(6), 711-717. doi:10.1080/14756360600810787
  • Sapers, G. M. (1993). Browning of Foods - Control by Sulfites, Antioxidants, and Other Means. Food Technology, 47(10), 75-84.
  • Shin, N. H., Ryu, S. Y., Choi, E. J., Kang, S. H., Chang, I. M., Min, K. R., & Kim, Y. (1998). Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem Biophys Res Commun, 243(3), 801-803. doi:10.1006/bbrc.1998.8169
  • Tinello, F., & Lante, A. (2018). Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innovative Food Science & Emerging Technologies, 50, 73- 83.
  • Türkeş, C., Demir, Y., & Beydemir, Ş. (2020). Some calciumchannel blockers: kinetic and in silico studies on paraoxonase-I. Journal of Biomolecular Structure and Dynamics, 1-9.
  • Wang, Y., Zhang, G., Yan, J., & Gong, D. (2014). Inhibitory effect of morin on tyrosinase: insights from spectroscopic and molecular docking studies. Food Chemistry, 163, 226-233. doi:10.1016/j.foodchem.2014.04.106
  • Wei, Z. F., Wang, X. Q., Peng, X., Wang, W., Zhao, C. J., Zu, Y. G., & Fu, Y. J. (2015). Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Industrial Crops and Products, 63, 175-181.
  • Xiong, Z., Liu, W., Zhou, L., Zou, L., & Chen, J. (2016). Mushroom (Agaricus bisporus) polyphenoloxidase inhibited by apigenin: Multi-spectroscopic analyses and computational docking simulation. Food Chemistry, 203, 430-439. doi:10.1016/j.foodchem.2016.02.045
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç