Balık kan karbondioksitinin taşınması ve atılmasında karbonik anhidraz izoenzimlerinin fonksiyonları

Balıklarda, kan karbondioksitinin $(CO_2)$ taşınması ve atılımı omurgalılardakine benzer şekilde meydana gelir. $CO_2$, konsantrasyon gradiyenti doğrultusunda dokulardan eritrositlere diftlze olur ve eritrositlerde karbonik anhidraz enzimi (CA) tarafından $HCO_3^- ve H^+$'a katalizlenir. Meydana gelen protonlar hemoglobin tarafından tamponl.anırken bikarbonat anyonlarının birçoğu, plazma klorür iyonunun hücre içine girişi ile hücre: dışına pasif olarak taşınırlar. Böylece dokulardan solungaçlara taşınan total $CO_2$'in çoğu plazma HCCV'ı olarak taşınmış olur. Solungaçların kılcal damarlarında ise bu siklüs tersine işler. Bu derlemede, CO2'in taşınması ve atılmasında iki önemli bileşen olan eritrosit ve solungaç CA izoenzimlerinin fonksiyonları anlatılmıştır.

The functions of carbonic anhydrase isozymes at fish blood carbon dioxide transport and excretion

In fish, blood carbon dioxide $(CO_2)$ transport and excretion follows the similar strategy as in vertebrates. COz from the tissues diffuses down its concentration gradient into the erythrocytes where it becomes catalyzed to $HCO_3^- and H^+$ by carbonic anhydrase (CA). The protons generated are largely buffered by hemoglobin whereas most of the bicarbonate anions are passively transported out of the cell in exchange for plasma chloride. Most of tbe total CO2 transported from the tissues to the gill is thus carried as plasma $HCO_3^-$ At the capillaries of the gill, the cycle is essentially reversed. In this review, it was explained that the functions of two important components, erythrocyte and gill CA, of these blood $CO_2$ transport and excretion processes.

___

  • Acierno, R., Maffia, M., Rollo M., Storelli, C, 1997. Buffer capacity in the blood of the hemoglobinless Antarctic fish chionadraco hamatus, Corap. Biochem. Physiol., 118A:989-992.
  • Backman, L., 1981. Binding of human carbonic anhydrase to human hemoglobin. Eur. J. Biochem., 120:1372-1383.
  • Badger, M.R., Price, G.D., 1994. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 45:369-392.
  • Carlsson., U., Kjellstrom, B., Antonsson, B., 1980. Purification and properties of cyclostome carbonic anhydrase from erythrocytes of hagfish. Biochim. Biophys. Acta., 612:160-170.
  • Chegwidden, W.EL., Dodgson, S.J., Spencer, I.M., 2000. In the Carbonic anhydrase-New Horizons. Birkhauser Verlag, Basel. 343-363.
  • Clare, B.W., Supuran, C.T., 2000. Carbonic anhydrase inhibitors;. Part 86. A QSAR study on some sulfonamide drugs which lower intra-ocular pressure, using the ACE non-linear statistical method. Eur. J. Med. Chem, 35:859-865.
  • Coleman, J.E., 1980. Current concepts of the mechanism of action of carbonic anhydrase. In: Bauer, C, Gros, G., Bartels, H. (Eds.), Biophysics and Physiology of Carbon Dioxide. Springer Verlag, New York.
  • Dimberg, K., 1994. The carbonic anhydrase inhibitor in trout plazma: purification and its effect on carbonic anyhdrase activity and the Root effect. Fish Physiol. Biochem., 12:381-386.
  • Esposito, EX, Baran, K., Kelly, K., Madura, J.D., 2000. Docking of sulfonamides to carbonic anhydrase II and IV. J.Mol.Graphkis Med., 18:283-289.
  • Gervais, M.R., Tufts, B.L., 1999. Characterization of carbonic anhydrase and anion exchange in the erythrocytes: of bow fin (Amia calva), a primitive air-breathing fish. Cornp. Biochem.Physiol. 123 A.343-350.
  • Gilmour, K.M., Henry, R.P., Wood, CM, Perry, S.F., 1997. Extracellular carbonic anhydrase and acid-base disequilibrium in the blood of the dog fish Squalus acanthias. J. Exp. Biol., 200:173-183.
  • Gilmour, K.M., Shah, B., Szebedinszky, C, 2OO2.An investigation of carbonic anhydrase activity in the gills and blood plazma of brown bullhead (Ameiunts nebulosus), longnose skate (Raja rhina), and spotted ratfish (Hydrlagus collieî), J. Comp. Physiol., 172 B:77-86.
  • Hall, G.E., Schraer, R., 1983. Characterization of a high activity carbonic anhydrase isozyme purified from erythrocytes of Salmo gairdneri. Comp. Biochem. Physiol., 75B:8l-92.
  • Henry, R.P., Gilmour K.M., Wood, C.M., Peıty, S. F., 1997. Extracellular carbonic anhydrase activity and carbonic anhydrase inhibitors in the circulatory system of fish. Physiol. Zool, 70:650-659.
  • Henry, R.P., Tufts, B.L., Boutıher, R.G., 1993. The distribution of carbonic anhydrase type I and Ü isozymes in lamprey and trout: possible co-evolution with erythrocyte chloride/bicarbonate exchange. J. Comp. Physiol., 163:380-388.
  • Henry, R.P., Swenson, E.R., 2000. The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs. Respir. Phys., 121:1-12.
  • Hewett-Emmett, D., Tashıan, R.E., 1991. Structure and evolutionary origins of the carbonic anhydrase multigene family. In The Carbonic Anhydrases (ed. S.J. Dodgson, R.E. Tashian, G. Gros and N.D. Carter) Plenum Press. New York.
  • Ilies, M., Supuran, C.T., Scozzafava, A., Casini, A., Mincione, F., Menabuoni, L., Caproiu, M.T., Maganu, M., Banciu, M.D., 2000. Carbonic Anhydrase Inhibitors: Sulfonamides Incorporating Furan-, Thiophene- and Pyrrole-carboxamido Groups Possess Strong Topical Intraocular Pressure Lowering Properties as Aqueous Suspensions. Bioorg. Med. Chem., 8:2145-2155.
  • Keilin, D., Mann, T., 1944. Activity of purifed carbonic anhydra.se. Nature, 153:107-108.
  • Khodadad, J.K., Weinstein R.S., 1983. The band 3-rich membrane of lama erythrocytes: stuies on cell shape and the organization of membrane proteins. J. Memb. Biol., 72:161-71.
  • Kifor, G., Toon, M.R., Janoshazi, A., Solomon, AX, 1993. Interaction between red cell membrane band-3 and cytosolic carbonic anhydrase. J. Memb. Biol. 134:169-179,
  • Kim, J.S., Gay, C.V., Schraer, R., 1983. Purification and properties of carbonic anhydrase from salmon erythrocytes. Comp. Biochem. Physiol., 76B:523-527.
  • Knauf, P.A., 1979. Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure. In: F. Bronner, A' Kleinzeller (eds.) Current Topics in Membranes and Transport, vol 12. Academic, New York.
  • Lessard, J., Val, A.L., Aota, S., Randall, D.J., 19915. Why is there no carbonic anydrase activity available to fish plasma? The J. Exp. Biol., 198:31-38.
  • Lindskog, S., 1980. Rate-limiting steps in the catalytic action of carbonic anhydrase. In: C. Bauer, G. Gros, H. Bartels (Eds.) Biophysics and Physiology of Carbon Dioxide. Springer-Verlag, New York.
  • Lindskog, S., Silverman, D.W., 2000. In the carbonic anhydrase. New Horizons, Biasel. 175-196.
  • Lionetto, M.G., Giordano, M.E., Vilella, S., Schettino, T., 2000. Inhibition of eel enzymatic activities by cadmium. Aquat Toxicol., 48:561-571.
  • Lopez Maiftanes, A.A., Magnoni, L.J., Goldemberg, A.L., 2000. Branda carbonic anhydrase (CA) of gills of Chasmagnathus granulata (Crustacea Decapoda). Comp. Biochem. Physiol., Part 127 8:85-95.
  • Maren, T.H., Sanyal, G., 1983. The activity of sulfonamides and anions against the carbonic anhydrases of animals, plants, and bacteria. Ann. Rev. Pharmacol. Toxicol., 23:439-59.
  • Maren, T.H., Freidland, B.R., Rittmaster, R.S., 1980. Kinetic properties of primitive vertebrate carbonic anhydrase. Comp. Biochem. Physiol., 67B:69-74.
  • Meldrum, N.N., Roughton, F.J.W., 1933. Carbonic anhydrase: its preparation and propeties. Nature, 80:113-142.
  • Motais, R., Fievet, B., Garcia-Romeu, F., Thomas, S., 1989. Na+/H+ exchange and pH regulation in red blood cells: role of uncatalyzed H2CO3 dehydration. Am. J. Physiol., 256.C728- C735.
  • Nikinmaa, M., Tithonen, K., Paajaste, M., 1990. Adrenergic control of red celt pH in salmonid fish: roles of the sodium/proton exchange, Jacobs-Stewart cycle and membrane potential. J. Exp. Biol., 154:257-271.
  • Paranawithans, S.R., Tu, K., Laipis, P.J., Silverman, D.N., 1990. Enhancement: of the catalytic activity of carbonic anhydrase m by phosphates. J. Biol. Chem., 265:22270-22274.
  • Parkes, J.L., Coleman, P.S., 1989. Enhancement of carbonic anhydrase activity by erythrocyte membranes. Arch. Biochem. Biophys., 275:459-468.
  • Perry, S,F., Wood, CM., Walsh, P.J., Thomas, S., 1996. Fish red blood cell carbon dioxide excretion in vitro: a comparative study. Comp Biochem. Physiol., 113A:121-130.
  • Peters, T., Papadopoulos, F., Kubis H-P., Gros G., 2000. Properties of a carbonic anhydrase inhibitor protein in flounder serum. J. Exp. Biol., 203:3003-3009.
  • Peterson, R.E., Tu, C, Linser, P.J., 1997. Isolation and Characterization of a Carbonic Anhydrase Homologue from the Zebrafish (Danio rerio). J. Mol. Evol., 44:432-439.
  • Pocker., Y., Sarkanen, S., 1979. Carbonic Anhydrase: Structure, Catalytic Versatility and Inhibition, Advances in Enzymology, Interscience, New York.
  • Rahim, Ş. M., Delaungy, J.P., Laurent, P., 1988. Identification and immunocytochemical localization of two different carbonic anhydrase isoenzymes in the teleostean fish erythrocytes and gill epithelia. Histochemistry, 89:451-459.
  • Randall, D.J., Brauner, C, 1998. Interaction Between Ion and Gas Transfer in Freshwater Teleost Fish. Comp. Biochem. Physiol.,
  • Romano, L., Passow, H., 1984. Characterisation of anion transport system in trout red blood cells. Am. J. Physiol., 246 (Cell Physiol. 15):C33O-338.
  • Sanyal, G., Pessah, N.I., Swenson, E.R., Maren, T.H, 1982. The carbon dioxide hydration activity of purified teleost red cell carbonic anhydrase. Inhibition by sulfonamides and anions. Comp Biochem Physiol.,73B;937-944.
  • Sanyal, G., 1984. Comparative carbon dioxide hydration kinetics and inhibition of carbonic anhydrase isozymes in vertebrates. Ann. NY Acad.Sci., 429:165-178.
  • Sender, S., Bottcher, K., Cetin, Y., Gros G., 1999. Carbonic anhydrase in the gills of seawater- and freshwater-acclimated flounders Platichthys flesus: Purification, characterization, and immunohistochemical localization. J. Histochem. Cytochem., 47 (1): 43-50.
  • Silverman, D.N., 1991. The catalytic mechanism of carbonic anhydrase. Can. J. Bot., 69:1070-1078.
  • Silverman, D.N., Backman, L., Tu, C, 1979. Role of hemoglobin im proton transfer to the active site of carbonic amhydrase. J. Biol. Chem., 254:2588-2591.
  • Silverman, D.N., Tu, C, Wynns, G., 1978. Proton, transfer between hemoglobin and the catbonic anhydrase active site. J. Biol, Chem., 254:2563-2567.
  • Smith, K.S., Ferry, J.G., 2000. Prokaryotic carbonic anhydrases. FEMS Microbiol. Rev., 24:335-366.
  • Solis, C, Olivera, A., Andrade, E., Ruvalcaba-Sil, J.L., Romero, I., Celis, H., 1999. PDCE analysis of Zn enzymes. Nucl. Instrum, Meth.,150B:222-225.
  • Stabenau, E.K,, Vanoye, C.G., Heming, T.A., 1991. Characteristics of the anion transport system in sea turtle erythrocytes. Am. J. Physiol.,261:R1218-1225.
  • Stadie, W.C., O'Brien, H., 1933. The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by the enzyme from red blood cells. J. Biochem., 103:521-529.
  • Supuran, C.T., Scozzafava, A., 2000. Carbonic anhydrase inhibitors -Part; 94. l,3,4-Thiadiazole-2-sulfonamide derivatives as antitumor agents? Eur. J. Med. Chem., 35:867-874.
  • Supuran, C.T., Hies, M., Scozzafava, A., 1998. Carbonic anhydrase inhibitors - Part 291: Interaction of isozymes I, II and IV with benzolamide-Sike derivatives. Eur. J. Med. Chem., 33: 739-751.
  • Tsuzukî, M., Miyachi, S., 1989. The function of carbonic anhydrase in aquatic photosynthesis. Aquat. Bot, 34:85-104.
  • Tu, C.K., Silverman, D.N., Foreman, C, Jonsson, B.H., Lindskog, S., 1989. Role of the histidine 64 in the catalytic mechanism of human carbonic anhydrase n studied with a site-specific mutant. Biochemistry, 28:7913-7918.
  • Wood, CM., Munger, S.51994. Carbonic anhydrase injection provides evidence for the role of blood acid-base status in stimulating ventilation after exhaustive exercise in rainbow trout. J. Exp. Biol., 94: 247-270.
Atatürk Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1300-9036
  • Yayın Aralığı: Yılda 3 Sayı
  • Yayıncı: AVES Yayıncılık
Sayıdaki Diğer Makaleler

Erzurum kent bütününde donatı elemanlarının kullanımı üzerine bir araştırma(1)

Pervin KUŞKUN, Hasan YILMAZ

Hava kirliliği ve bitkiler üzerindeki etkileri

Erdal ELKOCA

Sağmal ineklerin meme başı derileri ve çiğ sütlerinden izole edilen Staphylococcus aureus'ların patojenite özellikleri ile bazı antibiyotiklere duyarlılıkları

Mustafa ALİŞARLI, Hasan SOLMAZ

Türkiye’de Kırmızı Et Pazarlaması / Marketing of Red Meat Production and Consumption in Turkey

Vedat DAĞDEMİR, Avni BİRİNCİ, Tecer ATSAN

Kars kent halkının rekreasyonel talep ve eğilimlerinin belirlenmesi

Hasan YILMAZ, Demircioğlu Nalan YILDIZ, Sevgi YILMAZ

Farklı Dikim Zamanlarının, Erzurum Koşullarında Yüksek Tünelde Yetiştirilen Hıyarda, Gelişme ve Verim Üzerine Etkisi / The Effect Of Planting Times On The Growth and Yield Of Cucumber Grown In a High Tunnel In Erzurum Conditions

Haluk Çağlar KAYMAK, İsmail GÜVENÇ

Balık kan karbondioksitinin taşınması ve atılmasında karbonik anhidraz izoenzimlerinin fonksiyonları

Olcay HİSAR, M. Sıtkı ARAS, Aras Şükriye HİSAR, Telat YANIK

Tahıl Ürünlerinde Aroma Maddeleri: II. Kek, Pirinç, Mısır, Nişasta

H. Gürbüz KOTANCILAR, M. Murat KARAOĞLU

Doğu Anadolu yoncasından elde edilen hatların Kayseri ve bilensoy-80 çeşitleriyle karşılaştırmalı genel mahsul büyüme oranları ve bazı morfolojik özellikleri

Hayati ŞEKER, Lütfü TAHTACIOĞLU, Celalettin AYÜGN

Karadeniz’de Tanklarda Kefal (Liza Aurata, Risso 1810) Balığı Yetiştiriciliği Üzerine Bir Araştırma

Birol BAKİ, Göktuğ DALGIÇ