Östrojen-bağımlı meme kanseri ve sodyum-bağımlı organik anyon taşıyıcı

Postmenopozal dönemde aktif östrojen plazma seviyesi biyolojik etki konsantrasyonunun altında olmasına rağmen, östrojen-bağımlı meme kanserinin üçte ikisi bu dönemde ortaya çıkmaktadır. Buna karşın plazmada mikromolar düzeyde inaktif östrojen olan steroid-sülfatlar bulunmaktadir. Özellikle postmenopozal dönemdeki kadında steroid sülfatlardan intratümöral hormonal aktif östrojen üretimi meme kanseri hücrelerinin proliferasyonunda önemli rol oynar. Ancak steroid sülfatlar hidrofilik yapılarından dolayı intraselüler taşınmada bir membran taşıyıcıya ihtiyaç duymaktadır. Bugüne kadar steroid sülfatların meme dokusu tümör hücrelerindeki taşınma mekanizması geniş kapsamlı olarak açıklığa kavuşturulamamıştır. Bu derlemede solute carrier ailesinin yeni bir üyesi olan “sodyum-bağımlı organik anyon taşıyıcı” nın(Sodium dependent Organic Anion Transporter-SOAT) postmenopozal dönemde görülen östrojen-bağımlı meme kanserindeki rolü vurgulanacaktır.

Estrogen-dependent breast cancer and Sodium-dependent Organic Anion Transporter

Breast cancer in women is the most prevalent type of cancer and 95% of these cancers are hormone-dependent. Although the plasma levels of active estrogen in postmenopausal women is depend on the concentration of biological effects, the two-thirds of estrogen-dependent breast cancers are emerging in this period. By contrast, inactive estrogen sulphated steroids are still present in the plasma in micromolar concentrations. Intratumoral production of hormonally-active estrogens from sulphated steroids plays an important role in the proliferation of breast cancer cells, especially in postmenopausal women. Sulphated steroids require a membrane transporter to be carried into the cell because of their hydrophilic structure. To date, the answer of how sulphated steroids are carried into the cell still remains unclear. Therefore, the aim of this review was to determine the role of SOAT (Sodium-dependent Organic Anion Transporter), as a new member of the SLC-family, for the estrogen-dependent proliferation of breast cancer.

___

  • Almog N., Li R., Peled A., Schwartz D., Wolkowicz R., Goldfinger N., Pei H., Rotter V., 1997. The murine C'-terminally alternatively spliced form of p53 induces attenuated apoptosis in myeloid cells. Mol. Cell Biol. 17, 713-722.
  • Anonim, http://www.bioparadigms.org/slc/menu.asp [Erişim: 06.04.2009]
  • Baulieu EE., 1996. Dehydroepiandrosterone (DHEA): a fountain of youth? J. Clin. Endocrinol. Metab., 81, 3147-3151.
  • Carlstrom K., 1984. Influence of intratumoral estradiol biosynthesis on estrogen receptors. Recent Results Cancer Res., 91, 145-149.
  • Chen NH., Reith ME., Quick MW., 2004. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch., 447, 519-531.
  • Chetrite GS., Cortes-Prieto J., Philippe JC., Wright F., Pasqualini JR., 2000. Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J. Steroid Biochem. Mol. Biol., 72, 23-27.
  • Cuzick J. and Wang OY., 1986. The Prévention of breast cancer. The Lancet, 1:83-86.
  • Duffy MJ., 2005. Predictive markers in breast and other cancers: a review. Clin. Chem., 51, 494-503.
  • el Deiry WS. 1998. Regulation of p53 downstream genes. Semin. Cancer Biol., 8, 345-357.
  • Fernandes CF., Godoy JR., Doring B., Cavalcanti MC., Bergmann M., Petzinger E., Geyer J., 2007. The novel putative bile acid transporter SLC10A5 is highly expressed in liver and kidney. Biochem. Biophys. Res. Commun. 361, 26-32.
  • Geisler J., 2003. Breast cancer tissue estrogens and their manipulation with aromatase inhibitors and inactivators. J. Steroid Biochem. Mol. Biol., 86, 245-253.
  • Geyer J., Godoy JR., Petzinger E. 2004. Identification of a sodium-dependent organic anion transporter from rat adrenal gland. Biochem. Biophys. Res. Commun., 316 , 300-306.
  • Geyer J., Wilke T., Petzinger E., 2006. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch. Pharmacol., 372, 413-431.
  • Geyer J., Doring B., Meerkamp K., Ugele B., Bakhiya N., Fernandes CF., Godoy JR., Glatt H., Petzinger E., 2007. Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6). J. Biol. Chem., 282, 19728-19741.
  • Geyer J., Fernandes CF., Doring B., Burger S., Godoy JR., Rafalzik S., Hubschle T., Gerstberger R., Petzinger E., 2008. Cloning and molecular characterization of the orphan carrier protein Slc10a4: expression in cholinergic neurons of the rat central nervous system. Neuroscience, 152, 990-1005.
  • Giersiepen K., Heitmann C., Janhsen K., Lange C., 2005. Gesundheitsberichterstattung des Bundes, Heft 25, Brustkrebs Robert Koch Institut. (http://www.rki.de/cln_169/nn_199850/DE/Content/GBE/Gesundheitsberichterstattung/GBEDownloadsT/brustkrebs,templateId=raw,property=publicationFile.pdf/brustkrebs.pdf)
  • Godoy JR., Fernandes C., Doring B., Beuerlein K., Petzinger E., Geyer J., 2007. Molecular and phylogenetic characterization of a novel putative membrane transporter (SLC10A7), conserved in vertebrates and bacteria. Eur. J. Cell Biol., 86, 445-460.
  • Graeber TG., Osmanian C., Jacks T., Housman DE., Koch CJ., Lowe SW., and Giaccia AJ., 1996. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 379, 88-91.
  • Hediger MA., Romero MF., Peng JB., Rolfs A., Takanaga H., and Bruford E A., 2004. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch., 447, 465-468.
  • Henderson BE., Ross R., and Bernstein L., 1988. Estrogens as a cause of human cancer: the Richard and Hinda Rosenthal Foundation award lecture. Cancer Res., 48, 246-253.
  • Hollstein M., Sidransky D., Vogelstein B., and Harris CC., 1991. p53 mutations in human cancers. Science 253, 49-53.
  • Jemal A., Siegel R., Ward E., Hao Y., Xu J., Murray T., and Thun MJ., 2008. Cancer statistics. CA Cancer J. Clin., 58, 71-96.
  • Karakus E., 2009. Die Bedeutung des Transporters SOAT (SLC10A6) für die Entwicklung von Estrogen-abhängigen Mammakarzinomen, Doktora Tezi, Farmakoloji ve Toksikoloji Enstitüsü, Giessen.
  • Kosova F. ve Arı Z., 2008. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, 22 (6): 377 - 384.
  • Kramer W., Wess G., Schubert G., Bickel M., Girbig F., Gutjahr U., Kowalewski S., Baringhaus K. H., Enhsen A., Glombik H., 1992. Liver-specific drug targeting by coupling to bile acids. J. Biol. Chem., 267, 18598-18604.
  • Kramer W. and Wess G., 1996. Bile acid transport systems as pharmaceutical targets. Eur. J. Clin. Invest., 26, 715-732.
  • Krishnan V., Heath H., and Bryant HU., 2000. Mechanism of action of estrogens and selective estrogen receptor modulators. Vitam. Horm., 60, 123-147.
  • Labrie F., 1991. Intracrinology. Mol. Cell Endocrinol., 78, C113-C118.
  • Labrie F., Belanger A., Luu-The V., Labrie C., Simard J., Cusan L., Gomez JL., and Candas B., 1998. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids, 63, 322-328.
  • Le Bail JC., Marre-Fournier F., Nicolas JC., and Habrioux G., 1998. C19 steroids estrogenic activity in human breast cancer cell lines: importance of dehydroepiandrosterone sulfate at physiological plasma concentration. Steroids, 63, 678-683.
  • Levine AJ., 1997. p53, the cellular gatekeeper for growth and division. Cell, 88, 323-331.
  • Lowe SW. and Ruley HE., 1993. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev., 7, 535-545.
  • Meerkamp K., Zaichuk T., Ugele B., Petzinger E. and Geyer J., 2008. Expression of steroid sulfatase (STS) and sodium-dependent organic anion transporter (SOAT) in breast cancer. Nauny-Schmiedeberg`s Archives of Pharmacology., 388, (1), 11.
  • Meites J. 1972, Relation of Prolactin and Estrogene to mammary tumorogenesis in the rat. J. Nat. Cancer Inst. 48,1217-24.
  • Miyoshi Y., Ando A., Shiba E., Taguchi T., Tamaki Y., and Noguchi S., 2001. Involvement of up-regulation of 17beta-hydroxysteroid dehydrogenase type 1 in maintenance of intratumoral high estradiol levels in postmenopausal breast cancers. Int. J. Cancer, 94, 685-689.
  • Morris KT., Toth-Fejel S., Schmidt J., Fletcher WS., Pommier RF., 2001. High dehydroepi-androsterone sulfate predicts breast cancer progression during new aromatase inhibitor therapy and stimulates breast cancer cell growth in tissue culture: a renewed role for adrenalectomy. Surgery, 130, 947-953.
  • Nelson WG. and Kastan MB., 1994. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell Biol., 14, 1815-1823.
  • Nussbaumer P. and Billich A., 2005. Steroid sulfatase inhibitors: their potential in the therapy of breast cancer. Curr. Med. Chem. Anticancer Agents, 5, 507-528.
  • Osborne CK., 1998. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med., 339, 1609-1618.
  • Pasqualini JR., Maloche C., Maroni M., and Chetrite G., 1994. Effect of the progestagen Promegestone (R-5020) on mRNA of the oestrone sulphatase in the MCF-7 human mammary cancer cells. Anticancer Res., 14, 1589-1593.
  • Pasqualini JR., Chetrite G., Blacker C., Feinstein MC., Delalonde L., Talbi M., and Maloche C., 1996. Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre- and postmenopausal breast cancer patients. J. Clin. Endocrinol. Metab., 81, 1460-1464.
  • Pasqualini JR., Cortes-Prieto J., Chetrite G., Talbi M., and Ruiz A., 1997. Concentrations of estrone, estradiol and their sulfates, and evaluation of sulfatase and aromatase activities in patients with breast fibroadenoma. Int. J. Cancer., 70, 639-643.
  • Pasqualini JR. 2004. The selective estrogen enzyme modulators in breast cancer: a review. Biochim. Biophys. Acta., 1654, 123-143.
  • Petzinger E., Nickau L., Horz JA., Schulz S., Wess G., Enhsen A., Falk E., Baringhaus KH., Glombik H., Hoffmann A., and., 1995. Hepatobiliary transport of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors conjugated with bile acids. Hepatology, 22, 1801-1811.
  • Platia MP., Fencl MD., Elkind-Hirsch KE., Canick JA., and Tulchinsky D., 1984. Estrone sulfatase activity in the human brain and estrone sulfate levels in the normal menstrual cycle. J. Steroid Biochem., 21, 237-241.
  • Remy-Martin A., Prost O., Nicollier M., Burnod J., and Adessi GL., 1983. Estrone sulfate concentrations in plasma of normal individuals, postmenopausal women with breast cancer, and men with cirrhosis. Clin. Chem., 29, 86-89.
  • Roemer K., 1999. Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol. Chem., 380, 879-887.
  • Root C., Smith CD., Winegar DA., Brieaddy LE. , and Lewis MC., 1995. Inhibition of ileal sodium-dependent bile acid transport by 2164U90. J. Lipid Res., 36, 1106-1115.
  • Ruder HJ., Loriaux L., and Lipsett MB., 1972. Estrone sulfate: production rate and metabolism in man. J. Clin. Invest., 51, 1020-1033.
  • Saier MH Jr., 2000. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev., 64, 354-411.
  • Santen R., Cavalieri E., Rogan E., Russo J., Guttenplan J., Ingle J., and Yue W., 2009. Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, genotoxic effects. Ann. N. Y. Acad. Sci., 1155 , 132-140.
  • Santen RJ., Boyd NF., Chlebowski RT., Cummings S. , Cuzick J., Dowsett M., Easton D., Forbes JF., Key T., Hankinson S. E., Howell A. , and Ingle J., 2007. Critical assessment of new risk factors for breast cancer: considerations for development of an improved risk prediction model. Endocr. Relat Cancer, 14, 169-187.
  • Santner SJ., Feil PD., and Santen RJ., 1984. In situ estrogen production via the estrone sulfatase pathway in breast tumors: relative importance versus the aromatase pathway. J. Clin. Endocrinol. Metab, 59, 29-33.
  • Sasano H., Frost A. R., Saitoh R., Harada N., Poutanen M., Vihko R., Bulun SE., Silverberg SG., and Nagura H., 1996. Aromatase and 17 beta-hydroxysteroid dehydrogenase type 1 in human breast carcinoma. J. Clin. Endocrinol. Metab., 81, 4042-4046.
  • Sasano H., Suzuki T., Nakata T., and Moriya T., 2006. New development in intracrinology of breast carcinoma. Breast Cancer., 13, 129-136.
  • Satoh H., Yamashita F., Tsujimoto M., Murakami H., Koyabu N., Ohtani H., and Sawada Y., 2005. Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab. Dispos., 33, 518-523.
  • Suzuki T., Moriya T., Ishida T., Ohuchi N., and Sasano H., 2003. Intracrine mechanism of estrogen synthesis in breast cancer. Biomed. Pharmacother. 57, 460-462.
  • Suzuki T., Miki Y., Nakamura Y., Moriya T., Ito K., Ohuchi N., and Sasano H., 2005. Sex steroid-producing enzymes in human breast cancer. Endocr. Relat Cancer, 12, 701-720.
  • Tanaka H., Arakawa H., Yamaguchi T., Shiraishi K., Fukuda S., Matsui K., Takei Y., and Nakamura Y., 2000. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 404, 42-49.
  • Vogelstein B., Lane D., and Levine AJ., 2000. Surfing the p53 network. Nature, 408, 307-310.
  • Vousden KH., 2002. Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta, 1602, 47-59.
  • Woo LW., Purohit A., Reed MJ., and Potter BV., 1996. Active site directed inhibition of estrone sulfatase by nonsteroidal coumarin sulfamates. J. Med. Chem., 39, 1349-1351.
  • Zhu K., Wang J., Zhu J., Jiang J., Shou J., and Chen X., 1999. p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene, 18, 7740-7747.