Balıklarda Viral Enfeksiyonlara Karşı İmmun Sistemin İşleyişi

Balıklarda lenfoid doku ve organlar, primer ve sekonder olmak üzere iki bölüme ayrılır. Primer lenfoid doku ve organları timus, böbrek, dalak, sekonder olanları ise karaciğer, deri ve bağırsaklar oluşturur. Balıklarda kemik iliği ve lenf düğümleri bulunmamakla birlikte immun sistem ile immun organ ve hücrelerinin çoğu memeliler ile aynı yapı ve işleve sahiptir. Balıklarda da immun sistemin doğal ve kazanılmış olmak üzere iki farklı yanıtı vardır. Doğal bağışıklık, enfeksiyondan sonra hızlı bir şekilde uyarılır, immünolojik belleğin yokluğu ile karakterizedir. Antijene spesifik uyarı olmayıp, genler ile kodlanmış moleküller tarafından modüle edilir. Kazanılmış bağışıklık mükemmel bir spesifiteye ve hafızaya sahiptir; anahtar humoral parametre ise B lenfositlerin reseptörleri tarafından eksprese edilen antikorlardır. Patojenler doğal savunma mekanizmasını aştıklarında kazanılmış bağışıklık sistemi aktivasyona başlar ve spesifik lenfositler çoğalarak uzun dönem hafıza hücreleri ve plazma hücrelerine farklılaşırlar. Organizma bu patojenlere bir sonraki maruz kalmalarda hızlı ve etkili immun yanıt gösterecektir. Balıkların viral patojenlere karşı savunmasında hem doğal hem de kazanılmış bağışıklık sistemi birbirleri ile etkileşim içinde çalışmaktadırlar. Bu derlemede balıkların lenfoid organ ve dokuları, immun sistem hücre ve medyatör molekülleri ile viral enfeksiyonlarda immun sistemin işleyişi hakkında bilgi verilmiştir.

Regulation of The Immune System of Fish to Viral Infections

In fish, lymphoid tissues and organs are divided into two groups as primary and secondary. The primary lymphoid tissues and organs consist of thymus, kidney, spleen while secondary ones consist of liver, skin and intestines. Although bone marrow and lymph nodes do not exist in fish, most of immunological organs and cells along with immune system have the same structure and function as the mammals. In fish, there are also two different responses of immune system as natural and acquired. Natural immunity is stimulated expeditiously following the infection, it is characterized with absence of immunologic memory. It is not antigen specific stimulus but is modulated by the molecules encoded with genes. Acquired immunity has an excellent specifity and memory; the key humoral parameter is the antibodies expressed by the receptors of B lymphocytes. When the pathogens pass over the natural defence mechanism, the acquired immune system begins activation and specific lymphocytes proliferate and differentiate into long term memory cells and plasma cells. The organism would exhibit a rapid and effective immune response upon subsequent exposures to these pathogens. In the defence of fish against viral pathogens, both natural and acquired immune system work interactively. In this review, the information about the lymphoid organs and tissues of fish, their immune system cells and mediators and functioning of immune system in case of viral infections are reported.

___

  • 1. Crane M., Hyatt A., 2011. Viruses of fish: An overview of significant pathogens. Viruses, 3, 2025-2046.
  • 2. Collet B., 2014. Innate immune responses of salmonid fish to viral infection. Developmental
  • 3. Adedeji BO., Onianwa O., Okerentugba PO., Okonko IO., 2012. Immune response of fish to viral infection. Nature and Science, 10, 70-76.
  • 4. Magnadóttir B., 2010. Immunological control of fish diseases. Marine Biotechnology, 12, 361- 379. 5. Bozkurt M., Eren Ü., 2009. Balıklarda lenfoid organlar. Veteriner Hekimler Derneği Dergisi, 80, 13-18.
  • 6. Kav K., Erganiş O., 2008. Balıklarda bağışıklık sistemi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 24, 97-106.
  • 7. Kum C., Sekkin S., 2011. The immune system drugs in fish: immune function, immunoassay, drugs. In "Recent Advances in Fish Farms ", Ed., F Aral, 1st ed., 169-216, InTech Europe,Rijeka, Croatia.
  • 8. Uribe C., Folch H., Enriquez R., Moranı G., 2011. Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina, 56, 486-503.
  • 9. Altınterim B., 2011. Balık İmmünolojisi, bitkisel ve kimyasal immünostimulantlar. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1, 69-76.
  • 10. Ocak F., 2006. Balıklarda Lenfoid organlar ve immun sistemin özellikleri. Erciyes Üniversitesi Vetereiner Fakültesi Dergisi, 3, 61-66.
  • 11. Rombout JHWM., Yang G., Kiron V., 2014. Adaptive immune responses at mucosal surfaces of teleost fish. Fish and Shellfish Immunology, 40, 634-643.
  • 12. Johnson S., 2014. Living in Water. In "Texas Aquatic Science", Ed., RA Rosen, 1st ed., 162- 208, Texas A & M University Press, Corpus Christi.
  • 13. Zhang YA., Salinas I., Oriol-Sunyer J., 2011. Recent findings on the structure and function of teleost IgT. Fish and Shellfish Immunology, 31, 627-634.
  • 14. Munang'andu MH., Mutoloki S., Evensen Q., 2014. Acquired immunity and vaccination against infectious pancreatic necrosis virus of salmon. Developmental and Comparative Immunology, 43, 184-196.
  • 15. Harmache A., Leberre M., Droineau S., Giovannini M., Bremont M., 2006. Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for novirhabdovirus. Journal of Virology, 80, 3655-3659.
  • 16. Mikalsen AB., Haugland O., Rode M., Solbakk IT., Evensen O., 2012. Atlantic salmon reovirus infection causes a CD8 T cell myocarditis in atlantic salmon (Salmo salar L.). PLoS One, 7, 1- 11.
  • 17. Van Der Aa LM., Chadzinska M., Tijhaar E., Boudinot P., Verburg Van Kemenade BML., 2010. CXCL8 chemokines in teleost fish: two lineages with distinct expression profiles during early phases of inflammation. PLoS One, 5, 1- 13.
  • 18. Reyes Cerpa S., Reyes Lopez FE., Toro Ascuy D., Ibanez J., Maisey K., Sandino AM., Imarai M., 2012. IPNV modulation of pro and anti inflammatory cytokine expression in Atlantic salmon might help the establishment of infection and persistence. Fish and Shellfish Immunology, 32, 291-300.
  • 19. Liu G., Yang H., 2013. Modulation of macrophage activation and programming in immunity. Journal of Cellular Physiology, 228, 502-512.
  • 20. Tafalla C., Sanchez E., Lorenzen N., Dewitte-Orr SJ., Bols NC., 2008. Effects of viral hemorrhagic septicaemia virus (VHSV) on the rainbow trout (Oncorhynchus mykiss) monocyte cell line RTS- 11. Molecular Immunology, 45, 1439-1448.
  • 21. Hong JR., Gong HY., Wu J., 2002. IPNV VP5 a novel anti apoptosis gene of the Bcl 2 family regulates Mcl 1 and viral protein expression. Virology, 295, 217-229.
  • 22. Bassity E., Clark TG., 2012. Functional identification of dendritic cells in the teleost model rainbow trout (Oncorhynchus mykiss). PLoS One, 7, 1-14.
  • 23. Jorgensen HB., Sorensen P., Cooper GA., Lorenzen E., Lorenzen N., Hansen MH., Koop BF., Henryon M., 2011. General and family specific gene expression responses to viral hemorrhagic septicaemia virus infection in rainbow trout (Oncorhynchus mykiss).
  • 24. Reid A., Young KM., Lumsden JS., 2011. Rainbow trout (Oncorhynchus mykiss) ladderlectin, but not intelectin, binds viral hemorrhagic septicemia virus IVb. Diseases of Aquatic Organisms, 95, 137-143.
  • 25. Iliev DB., Skjæveland I., Jørgensen JB., 2013. CpG oligonucleotides bind TLR9 and RRM containing proteins in Atlantic salmon (Salmo salar). BMC Immunology, 14, 1-12.
  • 26. Sun B., Skjæveland I., Svingerud T., Zou J., Jørgensen J., Robertsen B., 2011. Antiviral activity of salmonid gamma interferon against infectious pancreatic necrosis virus and salmonid alphavirus and its dependency on type I interferon. Jornal of Virology, 85, 9188- 9198.
  • 27. Tafalla C., Chico V., Perez L., Coll JM., Estepa A., 2007. In vitro and in vivo differential expression of rainbow trout (Oncorhynchus mykiss) Mx isoforms in response to viral haemorrhagic septicaemia virus G gene, poly I: C and VHSV. Fish and Shellfish Immunology, 23, 210-221.
  • 28. Seo JY., Yaneva R., Cresswell P., 2011. Viperin: a multifunctional, interferoninducible protein that regulates virus replication. Cell Host Microbe, 10, 534-539.
  • 29. Sepulcre MO., Munoz I., Roca FJ., Lopez Munoz A., Mulero V., 2010. Molecular strategies used by fish pathogens to interfere with host programmed cell death. Developmental and Comparative Immunology, 34, 603-610.
  • 30. Toplu N., Albayrak H., Aydoğan A., Ekipmen ET., Metin N., 2010. Gökkuşağı alabalıklarında (Oncorhynchus mykiss Walbaum, 1792) enfeksiyöz pankreatik nekrozun patogenezisinde apoptozisin rolü. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 57, 191-196.
  • 31. Paulmann D., Magulski T., Schwarz R., Heitmann L., Flehmig B., Vallbracht A., Dotzauer A., 2008. Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. Journal of General Virology, 89, 1593-1604.
  • 32. Robertsen B., 2011. Can we get the upper hand on viral diseases in aquaculture of Atlantic salmon. Aquaculture Research, 42, 125-131.
  • 33. Collet B., Urquhart K., Noguera P., Larsen K., Lester K., Smail., Bruno DA., 2013. Method to measure an indicator of viraemia in Atlantic salmon using a reporter cell line. Journal of Virological Methods, 191, 113-117.
  • 34. Danion M., Lefloch S., Castric J., Lamour F., Cabon J., Quentel C., 2012. Effect of chronic exposure to pendimethalin on the susceptibility of rainbow trout, Oncorhynchus mykiss L. to viral hemorrhagic septicaemia virus. Ecotoxicology and Environmental Safety, 79, 28-34.
  • 35. Gadan K., Marjara IS., Sundh H., Sundell K., Evensen Q., 2012. Slow release cortisol implants result in impaired innate immune responses and higher infection prevalence following experimental challenge with infectious pancreatic necrosis virus in Atlantic salmon (Salmo salar) parr. Fish and Shellfish Immunology, 32, 637-644.
  • 36. Munang'andu HM., Fredriksen BN., Mutoloki S., Dalmo RA., Evensen O., 2013. The kinetics of CD4+ and CD8+ T-cell gene expression correlate with protection in atlantic salmon (Salmo salar L.) vaccinated against infectious pancreatic necrosis. Vaccine, 31, 1956-1963.
  • 37. Nakanishi T., Toda H., Shibasaki Y., Somamoto. T., 2011. Cytotoxic T cells in teleost fish. Developmental and Comparative Immunology, 35, 1317-1323.
  • 38. Zapata A., Diez B., Cejalvo T., Guiterrrez de Frias C., Cortes A., 2006. Ontogeny of the immune system of fish. Fish and Shellfish Immunology, 20, 126-136.
  • 39. Kim SH., Jang YS., 2014. Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines. Experimental and Molecular Medicine, 46, 1-8.
Atatürk Üniversitesi Veteriner Bilimleri Dergisi-Cover
  • ISSN: 1306-6137
  • Yayın Aralığı: Yılda 3 Sayı
  • Yayıncı: Atatürk Üniversitesi Veteriner Fakültesi
Sayıdaki Diğer Makaleler

Balıklarda Viral Enfeksiyonlara Karşı İmmun Sistemin İşleyişi

Yüksel DURMAZ, Harun ALBAYRAK

Siyah Alaca İneklerde Rasyona %3 ve %4 Klinoptilolit Takviyesinin Aminotransferaz Enzim Düzeyleri Üzerine Etkileri

Hasan ERDOĞAN, Deniz ALIÇ URAL

Holştayn Sütçü İneklerde Buzağılamadan Önceki Vücut Kondisyon Skorunun Seçilen Döl Verimi Özellikleri Üzerine Etkisi

Atilla YILDIZ

Yetişkin Wistar Erkek Ratlarda Amlodipinin Spermatolojik Parametreler ve Genital Organ Ağırlıkları Üzerine Etkileri

Kürşad BİRDANE, İbrahim KELEŞ, Fatih AVDATEK, Mustafa GÜNDOĞAN, Deniz YENİ, Mehmet Fatih BOZKURT

Siyah Alaca İneklerde Güç ve Ölü Doğumun Takip Eden Laktasyon Performansına Etkisi

Vecihi AKSAKAL, Mehmet TOPAL, Bahri BAYRAM

Kafkas Irkı (Apis mellifera caucasica) Ana Arılarının Bazı Üreme Özellikleri Üzerine Yetiştirme Dönemlerinin Etkisi

Mahir Murat CENGİZ, Turgut KIRMIZIBAYRAK, Kemal YAZICI, Kadir ÖNK

Buzağıların Sütten Kesim Öncesi Besleme Prensipleri

Erhan BAŞER

Kabuk Değiştirme Döneminde Kerevit (Astacus leptodactylus, Esch. 1823) Yemine İlave Edilen Vitamin E ve C'nin Büyüme, Oksidatif Stres, Vitamin A, E, C ve Beta Karoten Üzerine Etkileri

Mustafa KARATEPE, Özden ÖZ BARIM

Türkiye’de Görülen Bal Arısı (Apis mellifera) Hastalıkları

İbrahim BALKAYA, Hamza AVCIOĞLU, Hakan GÜLBAZ, Esin GÜVEN

Erzurum Yöresi Arıcılarının Karşılaştıkları Bal Arısı Hastalıkları

Hamza AVCIOĞLU, İbrahim BALKAYA, Hülya KAPLAN, Esin GÜVEN