Yanmayı geciktirici maddelerle muamele edilen ve epoksi ile poliürea reçineleriyle kaplanan Doğu kayını odununun çürüklük direnci

Bu çalışmada, yanmayı geciktirici özellikteki kimyasal maddelerden, borik asit, boraks ve amonyum sülfat ile emprenye işlemi uygulanan ve epoksi (Sika floor 156) ve poliürea (Sikalastic®-851 R) reçineleri ile kaplanan Doğu kayını (Fagus orientalis L.) odununun beyaz ve kahverengi çürüklük mantarlarına karşı direnç özelliklerinin geliştirilmesi amaçlanmıştır. Çalışmada, deney örnekleri borlu bileşikler ve amonyum sülfatın %3’lük sulu çözeltisiyle emprenye edilmiştir. Ardından bu örneklere poliürea ve epoksi reçineleri ile kaplama işlemi uygulanmıştır. Daha sonra örnekler 12 hafta boyunca kahverengi (Postia placenta) ve beyaz çürüklük (Trametes versicolor) mantar saldırılarına maruz bırakılarak, ASTM D 1413–07 (2007) standardına göre toprak blok (soil-block) testi gerçekleştirilmiştir. Elde edilen sonuçlara göre, emprenye ve kaplama işlemi gören tüm deney örnekleri için ağırlık kayıplarının kontrol örneğine göre daha düşük çıktığı belirlenmiştir. Çalışmada kaplama öncesi borlu bileşiklerle emprenye işlemi her iki mantar çürüklüğüne karşı, örneklerin çürüklük direncini istatistiksel anlamda önemli ölçüde artırmıştır.

Decay resistance of Oriental beech wood treated with fire retardants and coated with epoxy and polyurea resins

In this study, it was aimed to improve decay resistance of Oriental beech (Fagus orientalis L.) wood, which is impregnated with fire retardant chemicals such as boric acid, borax, and ammonium sulfate, and coated with epoxy (Sika floor 156) and polyurea (Sikalastic®-851 R) resins against white and brown rot fungi. Firstly, Oriental beech wood samples were impregnated with 3% aqueous solution of boron compounds and ammonium sulfate. Then, coating process with polyurea and epoxy resins was applied to impregnated samples. Afterwards, the samples were exposed to brown rot (Postia placenta) and white rot (Trametes versicolor) fungal attack for 12 weeks for using soil-block test according to ASTM D 1413-07 (2007) standard. Results showed that the weight losses for all impregnated and coated Oriental beech wood samples were lower compared to the control samples. In the study, impregnation of boron compounds before coating statistically significantly increased the decay resistance of the samples against both fungal rot.

___

  • Andrady A.L, Pandey K.K, Heikkilä A.M (2019) Interactive effects of solar UV radiation and climate change on material damage. Photochemical & Photobiological Sciences, 18(3), 804-825.
  • Arthur L.T, Quill K, (1992) Commercial flame retardant applications of boron compounds. In: Proceedings of the Flame Retardant’s 92 Conference, Wesminster, London 22-23, Jan. Elsevier Applied Science, London and NewYork, pp 223-237.
  • ASTM-D 1413-76 (1976). Standard test method of testing wood preservatives by laboratory soil blocks Cultures, Annual Book of ASTM Standards, pp. 452–60, USA.
  • ASTM-D 1413-07, (2007). Standard test method of testing wood preservatives by laboratory soil-block cultures. Annual Book of ASTM Standards, ASTM Standards, West Conshohocken, PA, USA.
  • Brebner K.I, Schneider M.H, Jones R.T (1988) The influence of moisture content on the flexural strength of styrene-polymerized wood. Forest Products Journal, 38(4), 55-58.
  • Baysal E, Yalınkılıç M.K, Altınok M, Sönmez A, Peker H, Çolak M (2007) Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture. Construction and Building Materials, 21(9), 1879-1885.
  • Bozkurt A, Göker Y, Erdin N (1993) Emprenye tekniği. İstanbul Üniversitesi Orman Fakültesi Yayınları, 3779/425, 429 s.
  • Chan‐Hom T, Yamsaengsung W, Prapagdee B, Markpin T, Sombatsompop N (2017) Flame retardancy, antifungal efficacies, and physical–mechanical properties for wood/polymer composites containing zinc borate. Fire and Materials, 41(6), 675-687.
  • Chang H.T, Chang S.T (2006) Modification of wood with isopropyl glycidyl ether and its effects on decay resistance and light stability, Bioresource Technology, 97, 1265–1271.
  • Cassens D, Johnson B.R, Feist W.C, DeGroot R.C (1995) Selection and use of preservative-treated wood. Forest Products Society, Madison, USA.
  • Desai S.D, Emanuel A.L, Sinha V.K. (2004). Bond strength improvement of polyurethane adhesive by grafting 2-hydroxyethyl methacrylate on polyol backbone. International Journal of Polymeric Materials, 53(12), 1061-1070.
  • Ghorbani M, Biparva P, Hosseinzadeh S (2018) Effect of colloidal silica nanoparticles extracted from agricultural waste on physical, mechanical and antifungal properties of wood polymer composite. European Journal of Wood and Wood Products, 76(2), 749-757.
  • Hafızoğlu H, Yalınkılıç M.K, Yıldız Ü.C, Baysal E, Peker H, Demirci Z (1994) Türkiye bor kaynaklarının odun koruma (emprenye) endüstrisinde değerlendirilme imkanları. Tübitak-Tarım ve Ormancılık Araştırma Grubu Projesi Kod No: TOAG-875, Trabzon.
  • Islam M.R, Beg M.D.H, Jamari S.S (2014) Development of vegetable‐oil‐based polymers. Journal of Applied Polymer Science, 131(18), 1-18.
  • Ibach R.E, Rowell R.M (1995) Low polymer levels containing bioactive monomer polymerized in situ provide resistance to Gloeophyllum trabeum. In: Document No. IRG/WP/95-30066. International Research Group on Wood Preservation Twenty-Sixth Annual Meeting, Helsingor, Denmark, pp 1-17.
  • Kalita H, Karak N (2013) Epoxy modified bio-based hyperbranched polyurethane thermosets. Designed Monomers and Polymers, 16(5), 447-455.
  • Koski A (2008) Applicability of crude tall oil for wood protection. University of Oulu PhD Thesis, Finland.
  • Kurtoğlu A (2000) Ağaç malzeme yüzey işlemleri, Genel bilgiler, İstanbul Üniversitesi Orman Fakültesi Orman Endüstri Mühendisliği Bölümü, Çantay Matbaacılık.
  • Lutomski K (1975) Resistance of beech wood modified with styrene, methyl methacrylate and diisocyanate against the action of fungi. Material und Organismen, 10(4), 255-262.
  • Murphy R.J (1990) Historical perspective in Europa. In: Proceedings of the first international conference on wood protection with diffusible preservatives, Nashville, Tennessee, pp 28-30.
  • Rosu L, Mustata F, Rosu D, Varganici C.D, Rosca I, Rusu T (2021) Bio-based coatings from epoxy resins crosslinked with a rosin acid derivative for wood thermal and anti–fungal protection. Progress in Organic Coatings, 151, 106008.
  • Raychura A.J, Jauhari S, Prajapati V.S, Dholakiya B.Z (2018) Synthesis and performance evaluation of vegetable oil based wood finish polyurethane coating. Bioresource Technology Reports, 3, 88-94.
  • Solpan D, Güven O (1999) Preservation of beech and spruce wood by allyl alcohol-based co-polymers, Radiation Physics and Chemistry, 54, 583–591.
  • Şimşek H, Yılmaz F, Baysal E, Toker H, Göktaş O, Çolak M, Peker, H (2009) Borlu Bileşiklerle Muamele Edilen Ağaç Malzemenin Tam Kuru Yoğunluk Değerleri ve Çürüklüğe Karşı Direnci. In: Uluslararası Bor Sempozyumu Eskişehir, pp 1-9.
  • Thevenon M.F, Pizzi A, Haluk, J.P (1997) Non-toxic albumin and soja protein borates as ground-contact wood preservatives. Holz als Roh-und Werkstoff, 55(5), 293-296.
  • Tasçıoğlu C, Yoshimura T, Tsunoda K. (2013) Biological performance of wood–plastic composites containing zinc borate: laboratory and 3-year field test results. Composites Part B: Engineering, 51, 185–190.
  • TSE 2470 (1976) Odunda fiziksel ve mekaniksel deneyler için numune alma metotları ve genel özellikler. Türk Standartları Enstitüsü.
  • Williams L.H (1980) Potential benefits of diffusible Preservatives for wood protection: an analysis with emphasis on building protection. In: Proceedings of First International Conferences on Wood Protection With Diffusible Preservatives, 28-30 Nov. Nashville, Tennessee, pp 29-34.
  • Yalınkılıç M.K, Imamura Y, Takahashi M, Demirci Z, Yalınkılıç A.C (1999) Biological, mechanical, and thermal properties of compressed-wood polymer composite (CWPC) pretreated with boric acid. Wood and Fiber Science, 31(2), 151-163.
  • Yalınkılıç M.K, Yusuf S, Yoshimura T, Su Wen-Yu, Tsunoda K, Takahashi M (1997) Incorporation of phenylboronic acid treatment with vapor phase formalization. The Int. Res. Group on Wood Preservation Document No. IRG/WP 97-40083.
  • Yalınkılıç M.K, Yusuf S, Yoshimura T, Takahashi M, Tsunoda K (1996) Effect of vapor phase formalization of boric acid treated wood on boron leachability and biological resistance. In: Proceedings of the 3. Pacific Rim Bio-Based Composites Symposium 2-5 December, 1996, Kyoto, pp 544-551.
  • Zhang C, Li Y, Chen R, Kessler M.R (2014) ACS Sustainable Chemistry & Engineering, 2:2465– 2476. doi:10.1021/sc500509h.