Kardiyovasküler Hastalıklarda Netrin-1’in Rolü

Laminin benzeri proteinlerin bir ailesi olan netrinler, başlangıçta embriyonik aksonal rehberlikteki rolleri ile tanımlanmıştır. Kemotropik özellik gösteren bu moleküller nöron göçünün iki fonksiyonlu bir düzenleyicisi gibi davranırlar. Araştırmacılar, merkezi sinir sistemindeki rolünden bağımsız olarak netrin-1'in sinir haricindeki dokuların gelişiminde ve oluşumunda rol oynadığını kanıtlamıştırKardiyovasküler alanla ilgili olarak, netrin-1 anjiyogenezi teşvik eder ve aterosklerozu hızlandırır, kalbi iskemi-reperfüzyon hasarına karşı korur ve infarktüs boyutunu azaltır.Bu bulgular, özellikle birçok fizyolojik ve patofizyolojik süreçte birbiriyle çelişebilen etkileri olduğu için netrin-1’i önemli bir terapötik hedef haline getirmektedir. Bu derlemede ateroskleroz, anjiyojenez ve iskemi reperfüzyon onarımı da dahil olmak üzere kardiyovasküler hastalıklar sırasında netrin-1 sinyallerinin işlevleri gözden geçirilmiştir.

Role of Netrin-1 in Cardiovascular Diseases

Netrins which are a family of laminin-like proteins, first described for their role in embryonic axonal guidance. These chemotropic molecules act as a bifunctional regulator of neuron migration. Researchers have proven the roles of netrin-1 in the development and formation of non-neural tissue apart from its role in the central nervous system .In cardiovascular area, netrin-1 is involved in angiogenesis, promotes atherosclerosis, protects the heart against ischemia–reperfusion injury, and reduces the infarct size. These findings make netrin-1 an important therapeutic target especially with its contradicted effects in physiological and pathophysiological processes. The aim of this review is to highlight the diverse and opposite effects and the functions of netrin-1 signalling during the cardiovascular diseases. 

___

  • Layne K, Ferro A, Passacquale G. Netrin-1 as a novel therapeutic target in cardiovascular disease: to activate or inhibit? Cardiovasc Res. 2015;107:410-9.
  • Rajasekharan S, Kennedy TE. The netrin protein family. Genome Biol. 2009;10:239.
  • Moore KJ, Fisher EA.Macrophages, atherosclerosis and the potential of netrin-1 as a novel target for future therapeutic intervention.Future Cardiol. 2012;8:349-52.
  • Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell. 1994;78:409–24.
  • Wang H, Copeland NG, Gilbert DJ, Jenkins NA, Tessier-Lavigne M. Netrin-3, a mouse homolog of human NTN2L, is highly expressed in sensory ganglia and shows differential binding to netrin receptors. J Neurosci. 1999;19:4938-47.
  • Yin Y, Sanes JR, Miner JH. Identification and expression of mouse netrin-4. MechDev. 2000;96:115– 9.
  • Bányai L, Patthy L. The NTR module domains of netrins secreted frizzled relatedproteins and type I procollagen C-proteinase enhancer protein are homologouswith tissue inhibitors of metalloproteases. Protein Sci. 1999;8:1636–42.
  • de Wit J, Verhaagen J. Proteoglycans as modulators of axon guidance cue function. Adv Exp Med Biol. 2007;600:73-89.
  • Barclay AN. Membrane proteins with immunoglobulin-like domains - a master superfamily of interaction molecules. Semin Immunol. 2003;15:215-23.
  • Moore SW, Tessier-Lavigne M, Kennedy TE. Netrins and their receptors. Adv Exp Med Biol. 2007;621:17-31.
  • Lai Wing Sun K, Correia JP, Kennedy TE.Netrins: versatile extracellular cues with diverse functions. Development. 2011;138:2153-69.
  • Keino-Masu K, Masu M, Hinck L, Leonardo ED et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell. 1996;87:175-85.
  • Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell.1999;97:927-41.
  • Barallobre MJ, Pascual M, Del Río JA, Soriano E. The Netrin family of guidance factors: emphasis on Netrin-1 signalling. Brain Res Brain Res Rev. 2005;49:22-47.
  • Ly A, Nikolaev A, Suresh G, Zheng Y, Tessier-Lavigne M, Stein E. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell. 2008;133:1241-54.
  • Stanco A, Szekeres C, Patel N, Rao S, Campbell K, Kreidberg JA et al. Netrin-1-α3/31 integrin interactions regulate the migration of interneurons through the cortical marginal zone. Proceedings of the National Academy of Sciences of the United States of America. 2009;106: 7595- 7600.
  • Yebra M, Montgomery AM, Diaferia GR, Kaido T, Silletti S, Perez B et al. Recognition of the neural chemoattractant Netrin-1 by integrins alpha6beta4 and alpha3beta1 regulates epithelial cell adhesion and migration. Dev Cell. 2003;5:695-707.
  • Haddick PC, Tom I, Luis E, Quiñones G, Wranik BJ, Ramani SR et al. Defining the ligand specificity of the deleted in colorectal cancer (DCC) receptor. PLoS One. 2014;9:e84823.
  • Stein E, Zou Y, Poo M, Tessier-Lavigne M. Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science. 2001;291:1976-82.
  • Geisbrecht BV, Dowd KA, Barfield RW, Longo PA, Leahy DJ. Netrin binds discrete subdomains of DCC and UNC5 and mediates interactions between DCC and heparin. J Biol Chem. 2003;278:32561-8.
  • Kruger RP, Lee J, Li W, Guan KL. Mapping netrin receptor binding reveals domains of Unc5 regulating its tyrosine phosphorylation. J Neurosci. 2004;24:10826-34.
  • Leonardo ED, Hinck L, Masu M, Keino-Masu K, Ackerman SL, Tessier-Lavigne M. Vertebrate homologues of C. Elegans UNC-5 are candidate netrin receptors. Nature.1997;386:833-8.
  • Zhong Y, Takemoto M, Fukuda T, Hattori Y, Murakami F, Nakajima D. et al. Identification of the genes that are expressed in the upper layers of the neocortex. Cereb Cortex. 2004;14:1144-52.
  • Hofmann K, Tschopp J. The death domain motif found in Fas (Apo-1) and TNF receptor is present in proteins involved in apoptosis and axonal guidance. FEBS Lett. 1995;371:321-3.
  • Yamakawa K, Huot YK, Haendelt MA, Hubert R, Chen XN, Lyons GE et al. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum Mol Genet. 1998;7:227-37.
  • Andrews GL, Tanglao S, Farmer WT, Morin S, Brotman S, Berberoglu MA et al. Dscam guides embryonic axons by Netrindependent and -independent functions. Development. 2008;135: 3839- 48.
  • Hoang S, Liauw J, Choi M, Choi M, Guzman RG, Steinberg GK. Netrin-4 enhances angiogenesis and neurologic outcome after cerebral ischemia. J Cereb Blood Flow Metab. 2009;29:385-97.
  • Nacht M, St Martin TB, Byrne A, Klinger KW, Teicher BA, Madden SL et al. Netrin-4 regulates angiogenic responses and tumor cell growth. Exp Cell Res. 2009;315:784-94.
  • Baker KA, Moore SW, Jarjour AA, Kennedy TE. When a diffusible axon guidance cue stops diffusing: roles for netrins in adhesion and morphogenesis. Curr Opin Neurobiol. 2006;16:529-34.
  • Ranganathan P, Mohamed R, Jayakumar C, Ramesh G. Guidance cue netrin-1 and the regulation of inflammation in acute and chronic kidney disease. Mediators Inflamm. 2014;2014:525891.
  • Bredesen DE, Mehlen P, Rabizadeh S. Apoptosis and dependence receptors: a molecular basis for cellular addiction. Physiol Rev. 2004;84:411-30.
  • Guenebeaud C, Goldschneider D, Castets M, Guix C, Chazot G, Delloye-Bourgeois C et al. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol Cell. 2010;40:863-76.
  • Lin JC, Ho WH, Gurney A, Rosenthal A. The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons. Nat Neurosci. 2003;6:1270-6.
  • Jarjour AA, Bull SJ, Almasieh M, Rajasekharan S, Baker KA, Mui J et al. Maintenance of axo- oligodendroglial paranodal junctions requires DCC and netrin-1. J Neurosci. 2008;28:11003-14.
  • Alcántara S, Ruiz M, De Castro F, Soriano E, Sotelo C. Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development. 2000; 127:1359-72.
  • Mehlen P, Furne C. Netrin-1: when a neuronal guidance cue turns out to be a regulator of tumorigenesis. Cell Mol Life Sci. 2005;62:2599–2616.
  • Arakawa H. Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer. 2004;4:978–87.
  • Ramesh G, Berg A, Jayakumar C. Plasma netrin-1 is a diagnostic biomarker of human cancers. Biomarkers. 2011;16:172–180.
  • Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature. 2004;432:179–186.
  • Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK et al. The axonal attractant Netrin-1 is an angiogenic factor. Proc Natl Acad Sci U S A. 2004;101:16210–5.
  • Wang W, Reeves WB, Pays L, Mehlen P, Ramesh G. Netrin-1 Overexpression Protects Kidney from Ischemia Reperfusion Injury by Suppressing Apoptosis. Am J Pathol. 2009;175:1010–8.
  • Ramesh G. Role of Netrin-1 Beyond the Brain: From Biomarker of Tissue Injury to Therapy for Inflammatory Diseases. Recent Pat Biomark. 2012;2:202–8.
  • Bongo JB, Peng DQ. The neuroimmune guidance cue netrin-1: a new therapeutic target in cardiovascular disease. J Cardiol. 2014;63:95-8.
  • Xie H, Zou L, Zhu J, Yang Y. Effects of netrin-1 and netrin-1 knockdown onhuman umbilical vein endothelial cells and angiogenesis of rat placenta. Placenta. 2011;32:546–53.
  • Castets M, Mehlen P. Netrin-1 role in angiogenesis: to be or not to be a pro-angiogenic factor? Cell Cycle. 2010;9:1466-71.
  • Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem.1998;273:30336–343.
  • Nguyen A, Cai H. Netrin-1 induces angiogenesis via a DCC-dependent ERK1/2-eNOS feed-forward mechanism. Proc Natl Acad Sci U S A. 2006;103:6530–5.
  • Joseph BB, Quan PD. The neuroimmune guidance cue netrin-1: a new therapeutic target in cardiovascular disease. Am J Cardiovasc Dis. 2013;3:129-34.
  • Durrani S, Haider KH, Ahmed RP, Jiang S, Ashraf M. Cytoprotective and pro-angiogenic activity of ex-vivo netrin-1 transgene overexpression protects theheart against ischemia–reperfusion injury. Stem Cells Dev. 2012;21:1769–78.
  • Lu H, Wang Y, He X, Yuan F, Lin X, Xie B et al. Netrin-1 hyperexpression in mouse brain promotes angiogene-sis and long-term neurological recovery after transient focal ischemia. Stroke. 2012;43:838–43.
  • Castets M, Coissieux MM, Delloye-Bourgeois C, Bernard L, Delcros JG, Bernet A et al. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis. Dev Cell. 2009;16:614–20.
  • Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature. 2004;432:179–186.
  • Larrivée B, Freitas C, Trombe M, Lu X, Delafarge B, Yuan L et al.Activation of the UNC5B receptor by netrin-1 inhibits sprouting angiogenesis.Genes Dev. 2007;21:2433–47.
  • Bouvrée K, Larrivée B, Lu X, Yuan L, DeLafarge B, Freitas C et al. Netrin-1 inhibits sprouting angiogenesis in developing avian embryos. Dev Biol. 2008;318:172–83.
  • Tu T, Zhang C, Yan H, Luo Y, Kong R,Wen P et al. CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res.2015;25:275–87.
  • Russell R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115–26.
  • Moore KJ, Tabas I. Macrophage in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.
  • Libby P, Aikawa M. Stabilization of atherosclerotic plaques: new mechanismsand clinical targets. Nat Med. 2002;8:1257–62.
  • Bellingan GJ, Caldwell H, Howie SE, Dransfield I, Haslett C. In vivo fate of theinflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes.J Immunol. 1996;157:2577–85.
  • Randolph GJ. Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis. Curr Opin Lipidol. 2008;19:462–8.
  • Rong JX, Li J, Reis ED, Choudhury RP, Dansky HM, Elmalem VI, et al. Elevating high-density lipoprotein cholesterol inapolipoprotein E-deficient mice remodels advanced atherosclerotic lesions bydecreasing macrophage and increasing smooth muscle cell content. Circulation. 2001;104:2447–52.
  • Llodrá J, Angeli V, Liu J, Trogan E, Fisher EA, Randolph GJ. Emigration ofmonocyte-derived cells from atherosclerotic lesions characterizes regressive,but not progressive, plaques. Proc Natl Acad Sci U S A. 2004;101:11779–84.
  • Feig JE, Parathath S, Rong JX, Mick SL, Vengrenyuk Y, Grauer L et al. Reversal of hyperlipidemia with a genetic switch favorably affectsthe content and inflammatory state of macrophages in atherosclerotic plaques.Circulation. 2011;123:989–98.
  • Ly NP, Komatsuzaki K, Fraser IP, Tseng AA, Prodhan P, Moore KJ et al. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci US A. 2005;102:14729–34.
  • Mirakaj V, Thix CA, Laucher S, Mielke C, Morote-Garcia JC, Schmit MA et al. Netrin-1 dampens pulmonary inflammation during acute lung injury. Am J Respir Crit Care Med. 2010;181:815–24.
  • Rosenberger P, Schwab JM, Mirakaj V, Masekowsky E, Mager A, Morote-Garcia JC et al. Hypoxia- inducible factor-dependent inductionof netrin-1 dampens inflammation caused by hypoxia. Nat Immunol. 2009;10:195–202.
  • Van Gils JM, Derby MC, Fernandes LR, Ramkhelawon B, Ray TD, Rayner KJ et al. The neuroimmune guidance cue netrin-1promotes atherosclerosis by inhibiting the emigration of macrophages fromplaques. Nat Immunol. 2012;13:136–43.
  • Swirski FK, Nahrendor M, Libby P. The ins and outs of inflammatory cells inatheromata. Cell Metab. 2012;15:135–6.
  • Ramkhelawon B, Yang Y, Van Gils JM, Hewing B, Rayner KJ, Parathath S et al. Hypoxia induces netrin-1 and Unc5bin atherosclerotic plaques: mechanism for macrophage retention and survival.Arterioscler Thromb Vasc Biol. 2013;33:1180–8.
  • Prasad A, Stone GW, Holmes DR, Gersh B. Reperfusion injury, microvasculardysfunction, and cardioprotection: the dark side of reperfusion. Circulation. 2009;120:2105–12.
  • Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.
  • Kim HK, Kang SW, Jeong SH, Kim N, Ko JH, Bang H, et al. Identification of potential target genesof cardioprotection against ischemia–reperfusion injury by express sequencetags analysis in rat hearts. J Cardiol. 2012;60:98–110.
  • Thuny F, Lairez O, Roubille F, Mewton N, Rioufol G, Sportouch C et al. Post-conditioning reduces infarct size and edemain patients with ST-segment elevation myocardial infarction. J Am Coll Cadiol. 2012;59:2175–81.
  • Zhang J, Cai H. Netrin-1 prevents ischemia–reperfusion induced myocardialinfarction via a DCC/ERK1/2/eNOSs1177/NO/DCC feed-forward mechanism. JMol Cell Cardiol. 2010;48:1060–70.
  • Siu KL, Zhang J, Lotz C, Ping P, Cai HL. Netrin-1 abrogates ischemia–reperfusioninduced cardiac mitochondrial dysfunction via attenuation of NOX4 and NOSuncoupling. Circulation. 2011;124:A16331.
  • Bouhidel OJ, Cai LH. Postconditioning with netrin-1 protects against myocardialischemia– reperfusion injury via a DCC/ERK1/2/eNOS mechanism. Circulation. 2011;124:A17337.