PSEUDOMONAS AERUGINOSA DİRENÇ MEKANİZMALARI: AKTİF POMPA SİSTEMLERİ

Pseudomonas aeruginosa kaynaklı infeksiyonların tedavisinde antibiyotik direnci her geçen gün önemi artan bir konu olup yapısal olarak farklı birçok antibiyotiğe kazanılmış dirençle ilişkili atım pompa sistemleri dikkat çekicidir. P.aeruginosa atım pompa sistemleri arasında önemli bir yeri olan RND ailesi; MexAB-OprM, MexCD-OprJ, MexEFOprN ve MexXY-OprM gibi atım pompa sistemlerini içermektedir. İlk tanımlanan atım pompası olan MexAB-OprM farklı sınıflardaki ilaçların hücreden dışarı atılmasını sağlamaktadır. MexAB-OprM'ye yüksek derecede benzerliği olduğu sekans çalışmalarıyla gösterilen MexCD-OprJ pompasının da çeşitli antimikrobiyal ajanların atımında rol oynadığı gösterilmiştir. Benzer şekilde MexEF-OprN de dışarı atımı destekleyen bir diğer pompa sistemidir. Diğer RND atım pompalarının dirence katkıları ve ekspresyonlarını kontrol eden faktörler henüz tanımlanmaya başlanmıştır. Bu derlemede P.aeruginosa antibiyotik direnç mekanizmalarından atım pompa sistemleri hakkında mevcut durum ayrıntılı olarak incelenecektir.

Pseudomonas aeruginosa Resistance Mechanisms: Efflux Pump Systems

The rise of antibiotic resistance is an increasingly important threat, particularly for infections caused by Pseudomonas aeruginosa. One of the primary mechanisms driving this resistance is the overexpression of efflux pump systems, which enable resistance to a wide range of drugs with different constitutional features. The RND family of efflux pumps, including MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM, represent an important set of efflux systems in P.aeruginosa, with a broad range of drug specificities. MexAB-OprM was the first efflux pump found to target multiple classes of drugs. MexCD-OprJ exhibits a high degree of sequence similarity to MexABOprM, and has also been shown to extrude a variety of antimicrobial agents. The other efflux pump, MexEF-OprN is able to export. The contributions of the remaining RND efflux pumps to resistance, and the mechanisms governing their expression, have yet to be fully elucidated. This review focuses on details of efflux pump systems in P.aeruginosa resistance mechanisms

___

  • Aendekerk S, Diggle SP, Song Z et al. The MexGHI- OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone- dependent cell-to-cell communication, Microbiology 2005;151(Pt 4):1113-25. http://dx.doi.org/10.1099/mic.0.27631-0
  • Aendekerk S, Ghysels B, Cornelis P, Baysse C. Characterization of a new efflux pump, MexGHI- OpmD from Pseudomonas aeruginosa that con- fers resistance to vanadium, Microbiology 2002; 148(Pt 8):2371-81. http://dx.doi.org/10.1099/00221287-148-8-2371
  • Aykan ŞB, Çiftci İH. Changes in antibiotic resis- tance of Pseudomonas aeruginosa isolates over the past 11 years in Turkey: a meta-analysis, Mikrobiyol Bul 2015;49(3):352-65. http://dx.doi.org/10.5578/mb.9734
  • Baranova N, Nikaido H. The baeSR two- component regulatory system activates transcrip- tion of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate, J Bacteriol 2002;184(15):4168-76. http://dx.doi.org/10.1128/JB.184.15.4168-4176.2002
  • Blondel-Hill E, Henry DA, Speert DP. Pseudomonas, "Murray PR, Baron EJ, Pfaller MA, Landry ML, Jorgensen JH (eds). Manuel of Clinical Microbiology, 9. baskı" kitabında s.734-48, ASM Press, Washington (2007).
  • Cabot G, Ocampo-Sosa AA, Tubau F et al. Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstre- am infections: prevalence and impact on resistan- ce in a Spanish multicenter study, Antimicrob Agents Chemother 2011;55(5):1906-11. http://dx.doi.org/10.1128/AAC.01645-10
  • Castang S, McManus HR, Turner KH, Dove SL. H-NS family members function coordinately in an opportunistic pathogen, Proc Natl Acad Sci 2008;105(48):18947-52. http://dx.doi.org/10.1073/pnas.0808215105
  • Chuanchuen R, Murata T, Gotoh N, Schweizer HP. Substrate-dependent utilization of OprM and OpmH by the Pseudomonas aeruginosa MexJK efflux pump, Antimicrob Agents Chemother 2005; 49(5):2133-36. http://dx.doi.org/10.1128/AAC.49.5.2133-2136.2005
  • Chuanchuen R, Narasaki CT, Schweizer HP. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan, J Bacteriol 2002;184(18):5036-44. http://dx.doi.org/10.1128/JB.184.18.5036-5044.2002
  • El Amin N, Giske CG, Jalal S, Keijser B, Kronvall G, Wretlind B. Carbapenem resistance mecha- nisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully expla- in resistance patterns observe in clinical isolates, APMIS 2005;113(3):187-96. http://dx.doi.org/10.1111/j.1600-0463.2005. apm1130306.x
  • Evans K, Adewoye L, Poole K. MexR repressor of the MexAB- OprM multidrug efflux operon of Pseudomonas aeruginosa: identification of MexR binding sites in the MexA-MexR intergenic regi- on, J Bacteriol 2001;183(3):807-12. http://dx.doi.org/10.1128/JB.183.3.807-812.2001
  • Evans K, Poole K. The MexA-MexB-OprM mul- tidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated, FEMS Microbiol Lett 1999;173(1):35-9. http://dx.doi.org/10.1111/j.1574-6968.1999.tb13481.x
  • Giske CG, Buaro L, Sundsfjord A, Wretlind B. Alterations of porin, pumps, and penicillin- binding proteins in carbapenem resistant clinical isolates of Pseudomonas aeruginosa, Microbial Drug Resistance 2008;14(1):23-30. http://dx.doi.org/10.1089/mdr.2008.0778
  • Kohler T, Epp SF, Curty LK, Pechere JC. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa, J Bacteriol 1999;181(20): 6300-05.
  • Kohler T, Michea-Hamzehpour M, Henz U, Gotoh N, Curty LK, Pechere JC. Characterization of MexE-MexF-OprN, a positively regulated multid- rug efflux system of Pseudomonas aeruginosa, Mol Microbiol 1997;23(2):345-54. http://dx.doi.org/10.1046/j.1365-2958.1997.2281594.x
  • Li XZ, Barre N, Poole K. Influence of MexA-MexB- OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aerugi- nosa, J Antimicrob Chemother 2000;46(6):885-93. http://dx.doi.org/10.1093/jac/46.6.885
  • Li Y, Mima T, Komori Y et al. A new member of the tripartite multidrug efflux pumps, MexVW- OprM, in Pseudomonas aeruginosa, J Antimicrob Chemother 2003;52(4):572-75. http://dx.doi.org/10.1093/jac/dkg390
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial- resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally enco- ded resistance mechanisms, Clin Microbiol Rev 2009;22(4):582-610. http://dx.doi.org/10.1128/CMR.00040-09
  • Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX- MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa, Antimicrob Agents Chemother 2000;44(12):2242-46. http://dx.doi.org/10.1128/AAC.44.9.2242-2246.2000
  • Matsuo Y, Eda S, Gotoh N, Yoshihara E, Nakae T. MexZ- mediated regulation of MexXY multidrug efflux pump expression in Pseudomonas aerugi- nosa by binding on the MexZ-MexX intergenic DNA, FEMS Microbiol Lett 2004;238(1):23-8.
  • McGowan JE Jr. Resistance in nonfermenting gram negative bacteria: multidrug resistance to the maximum, Am J Infect Control 2006;34(5 Suppl 1):29-37. PMID:16813979 http://dx.doi.org/10.1016/j.ajic.2006.05.226
  • Mima T, Joshi S, Gomez-Escalada M, Schweizer HP. Identification and characterization of TriABC- OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion prote- ins, J Bacteriol 2007;189(21):7600-09.
  • Mima T, Kohira N, Li Y et al. Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND com- ponents in Pseudomonas aeruginosa, Microbiology 2009;155(Pt 11):3509-17. http://dx.doi.org/10.1099/mic.0.031260-0
  • Mine T, Morita Y, Kataoka T, Mizushima T, Tsuchiya T. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa, Antimicrob Agents Chemother 1999; 43(2):415-17.
  • Mima T, Sekiya H, Mizushima T, Kuroda T, Tsuchiya T. Gene cloning and properties of the RND-type multidrug efflux pump, MexPQ-OpmE and MexMN-OprM from Pseudomonas aerugino- sa, Microbiol Immunol 2005;49(11):999-1002. http://dx.doi.org/10.1111/j.1348-0421.2005.tb03696.x
  • Morita Y, Cao L, Gould VC, Avison MB, Poole K. nalD encodes a second repressor of the MexAB- OprM multidrug efflux operon of Pseudomonas aeruginosa, J Bacteriol 2006;188(24):8649-54. http://dx.doi.org/10.1128/JB.01342-06
  • Morita Y, Murata T, Mima T et al. Induction of MexCD-OprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeru- ginosa PAO1, J Antimicrob Chemother 2003;51(4): 991-94. http://dx.doi.org/10.1093/jac/dkg173
  • Murata T, Gotoh N, Nishino T. Characterization of outer membrane efflux proteins OpmE, OpmD and OpmB of Pseudomonas aeruginosa: molecu- lar cloning and development of specific antisera, FEMS Microbiol Lett 2002;217(1):57-63. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11456.x
  • Ochs MM, McCusker MP, Bains M, Hancock RE. Negative regulation of the Pseudomonas aerugi- nosa outer membrane porin OprD selective for imipenem and basic amino acids, Antimicrob Agents Chemother 1999;43(5):1085-90.
  • Oh H, Stenhoff J, Jalal S, Wretlind B. Role of efflux pumps and mutations in genes for topoisomera- ses II and IV in fluoroquinolone-resistant Pseudomonas aeruginosa strains, Microb Drug Resist 2003;9(4):323-28. http://dx.doi.org/10.1089/107662903322762743
  • Palma M, Zurita J, Ferraras JA, et al. Pseudomonas aeruginosa SoxR does not conform to the archety- pal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response, Infect Immun 2005;73(5):2958-66. http://dx.doi.org/10.1128/IAI.73.5.2958-2966.2005
  • Pechere JC, Kohler T. Patterns and modes of beta- lactam resistance in Pseudomonas aeruginosa, Clin Microbiol Infect 1999;5(Suppl 1):15-8. PMID:11869272 http://dx.doi.org/10.1111/j.1469-0691.1999.tb00719.x
  • Poole K. Outer membranes and efflux: the path to multidrug resistance in gram-negative bacteria, Curr Pharm Biotechnol 2002;3(2):77-98. http://dx.doi.org/10.2174/1389201023378454
  • Poole K, Gotoh N, Tsujimoto H et al. Overexpression of the MexC-MexD-OprJ efflux operon in nfxB- type multidrug resistant strains of Pseudomonas aeruginosa, Mol Microbiol 1996; 21(4):713-24. http://dx.doi.org/10.1046/j.1365-2958.1996.281397.x
  • Poole K, Srikumar R. Multidrug efflux in Pseudomonas aeruginosa: components, mecha- nisms, and clinical significance, Curr Top Med Chem 2001;1(1):59-71. http://dx.doi.org/10.2174/1568026013395605
  • Saier MH, Paulsen IT, Sliwinski MK, Pao SS, Skurray RA, Nikaido H. Evolutionary origins of multidrug and drug-specific efflux pumps in bac- teria, FASEB J 1998;12(3):265-74.
  • Saito K, Eda S, Maseda H, Nakae T. Molecular mechanism of MexR-mediated regulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa, FEMS Microbiol Lett 2001;195(1):23-28. http://dx.doi.org/10.1016/s0378-1097(00)00539-5
  • Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions, Genet Mol Res 2003;2(1):48-62.
  • Sobel ML, Neshat S, Poole K. Mutations in PA2491 (MexS) promote MexT-dependent MexEF-OprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa, J Bacteriol http://dx.doi.org/10.1128/JB.187.4.1246-1253.2005
  • Stover CK, Pham XQ, Erwin AL et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature 2000; 406(6799):959-64. http://dx.doi.org/10.1038/35023079
  • Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance, J Med Microbiol 2009;58(9):1133-48. http://dx.doi.org/10.1099/jmm.0.009142-0
  • Terzi HA. Pseudomonas aeruginosa izolatlarının antibiyotiklere direnç mekanizmalarında aktif atım pompaları ve porin proteinlerinin etkisinin araştırılması, Sakarya Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji Bölümü, Uzmanlık Tezi. Sakarya (2012).
  • Terzi HA, Kulah C, Atasoy AR, Ciftci IH. Investigation of OprD porin protein levels in carbapenem-resistant Pseudomonas aeruginosa isolates, Jundishapur J Microbiol 2015;8(12):e25952.
  • Terzi HA, Kulah C, Ciftci IH. The effects of active efflux pumps on antibiotic resistance in Pseudomonas aeruginosa, World J Microbiol Biotechnol 2014;30(10):2681-7. http://dx.doi.org/10.1007/s11274-014-1692-2
  • Van Bambeke R, Balzi E, Tulkens PM. Antibiotic efflux pumps, Biochem Pharmacol 2000;60(4):457- 70. http://dx.doi.org/10.1016/S0006-2952(00)00291-4
  • Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections, Emerg Infect Dis 1998;4(4):551-60. http://dx.doi.org/10.3201/eid0404.980405
  • Westfall LW, Carty NL, Layland N, Kuan P, Colmer-Hamood JA, Hamood AN. mvaT mutati- on modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon MexEF-OprN, FEMS Microbiol Lett 2006;255(2):247-54. http://dx.doi.org/10.1111/j.1574-6968.2005.00075.x
  • Wolter DJ, Hanson ND, Lister PD. Novel mecha- nism of MexEF-OprN efflux pump overexpressi- on in Pseudomonas aeruginosa without coregula- tion of OprD expression, 48th Intersci Conf Antimicrob Agents Chemother, abstr. C1-1058, Washington (2008).
  • Xavier DE, Picao RC, Girardello R, Fehlberg LC, Gales AC. Efflux pumps expression and its associ- ation with porin down-regulation and ?-lactamase production among Pseudomonas aeruginosa cau- sing bloodstream infections in Brazil, BMC Microbiology 2010;10:217. http://dx.doi.org/10.1186/1471-2180-10-217
  • Zhao Q, Li XZ, Srikumar R, Poole K. Contribution of outer membrane efflux protein OprM to antibi- otic resistance in Pseudomonas aeruginosa inde- pendent of MexAB, Antimicrob Agents Chemother 1998;42(7):1682-86.