KİNOA (CHENOPODIUM QUINOA WILLD.) ÜZERİNE BİR DERLEME

      Amaç: Bu derlemede, geçmişiyle başlayıp kinoa hakkındaki güncel bilgileri, kinoanın botanik, kimyasal ve biyolojik özelliklerini, beslenme profilini de kapsayacak şekilde özetlemek amaçlanmıştır.      Sonuç ve Tartışma: Kinoa (Chenopodium quinoa Willd.) geleneksel olarak Güney Amerika kültürleri tarafından binlerce yıldır tüketilen ve günümüzde dünya genelinde işlevsel bir gıda olarak dikkat çeken tahıl benzeri (pseudocereal) bir bitkidir. Yüksek miktarda içerdiği protein, lipid, lif, vitamin ve minerallerin yanı sıra mükemmel bir esansiyel amino asit dengesine sahiptir. Kinoanın saponinler, fitosteroller, fitoekdisteroitler, fenolikler, betalinler ve glisin betain gibi çok sayıda fitokimyasal madde içerdiği bulunmuştur. Bu bileşikler, metabolik, kardiyovasküler ve gastrointestinal sağlık üzerine faydalı etkiler gösterebilir. Kinoanın biyolojik özelliklerini tam olarak anlayabilmek için klinik çalışmları da kapsayacak şekilde fitokimyasal biyoyararlanımı, etki mekanizmaları ve etkileşimleri üzerinde daha çok araştırma yapılması gerekmektedir.

A REVIEW ON QUINOA (CHENOPODIUM QUINOA WILLD.)

     Objective: In this review, it is aimed to summarize current knowledge about quinoa starting with its history then following botanical, chemical and biological, and its nutritional profile.      Result and Discussion: Quinoa (Chenopodium quinoa Willd.) is a pseudocereal plant which is traditionally consumed by South American cultures for thousands of years and today it is a remarkable plant worldwide as a functional food. Besides its high protein, lipid, fiber, vitamins and mineral content it is also has an excellent balance of essential amino acids. Quinoa has been found to contain numerous phytochemicals including saponins, phytosterols, phytoecdysteroids, phenolics, betalains and glycine betain. These compounds may exert beneficial effects on metabolic, cardiovascular, and gastrointestinal health. In order to fully understand the biological properties of quinoa, more research is needed on phytochemical bioavailability, mechanisms of action and interactions, including clinical studies.

___

  • 1. Tan, M., Yöndem, Z. (2013). İnsan ve hayvan beslenmesinde yeni bir bitki: Kinoa (Chenopodium quinoa Willd.). Alınteri, 25(B), 62-66.
  • 2. Demir, M.K., Kılıç, M. (2016). Kinoa: besinsel ve antibesinsel özellikleri. Journal of food and health science, 2(3), 104-111.
  • 3. Graf, B.L., Rojas-Silva, P., Rojo, L.E., Delatorre-Herrera, J., Balde´on, M.E., Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive reviews in food science and food safety, 14, 431-445.
  • 4. Vilcacundo, R., Hernandez-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science,14,1–6.
  • 5. United states department of agriculture site; Natural resources conservation sevices. Retrieved August 22, 2017, from https://plants.usda.gov/core/profile?symbol=CHQU
  • 6. Davis, P.H. (1967). Chenopodiaceae. In: P. Aellen (Eds.), Flora of Turkey (Vol. 2), (pp.294-300). Edinburgh: University Press.
  • 7. Lim, T.K. (2013). Chenopodium quinoa. Edible Medicinal and Non-Medicinal Plants: Fruits (Vol 5), (pp. 115-131). Springer Science+Business Media Dordrecht.
  • 8. Bhargava, A., Shukla, S., Ohri, D. (2006). Chenopodium quinoa; an Indian perspective. Industrial Crops and Products, 23(2006), 73–87.
  • 9. Jacobsen, S.E. (2003). The Worldwide Potential for Quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19(1-2), 167-177.
  • 10. Iqbal, M.A. (2015). An Assessment of quinoa (Chenopodium quinoa Willd.) potential as a grain crop on marginal lands in Pakistan. American-Eurasian Journal of Agricultural & Environmental Sciences, 15(1), 16-23.
  • 11. Kır, A.E., Temel, S. (2016). Iğdır Ovası Kuru Koşullarında Farklı Kinoa (Chenopodium quinoa Willd.) Çeşit ve Populasyonlarının Tohum Verimi ile Bazı Tarımsal Özelliklerinin Belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(4), 145-154.
  • 12. Impact Foods International Ltd. site (2016). Retrieved August 22, 2017, from http://www.impactfoods.co.uk/quinoa
  • 13. Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S., Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2012), 132-138.
  • 14. Lorusso, A., Verni, M., Montemurro, M., Coda, R., Gobbetti, M., Rizzello, C.G. (2017). Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT-Food Science and Technology, 78(2017), 215-221.
  • 15. Abugoch James, L.E. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research, 58, 1–31.
  • 16. Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., Martínez, E.A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541–2547.
  • 17. Schlick, G., Bubenheim, D.L. (1996). Quinoa: candidate crop for NASA’s controlled ecological life support systems. In: Janick J (ed), Progress in new crops, ( pp 632–640). Arlington: ASHS Press.
  • 18. Abugoch, L.E., Romero, N., Tapia, C.A., Silva, J., Rivera, M. (2008). Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa Willd) protein isolates. Journal of agricultural and food chemistry, 56(12), 4745–4750.
  • 19. Schoenlechner, R., Drausinger, J., Ottenschlaeger, V., Jurackova, K., Berghofer, E. (2010). Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. Plant Foods for Human Nutrition, 65(4), 339–349.
  • 20. Food and Agriculture Organization of the United Nations site. (2013). Retrieved November 13, 2017, from http://www.fao.org/quinoa-2013/what-is-quinoa/origin-and-history/en/
  • 21. USDA National Nutrient Database for Standard Reference, Release 28 slightly revised May, 2016 Full Report (All Nutrients), Quinoa, uncooked. Retrieved November 13, 2017, from https://ndb.nal.usda.gov/ndb/search/list
  • 22. Jancurovά, M., Minarovičovά, L., Dandάr, A. (2009). Quinoa: a Review. Czech Journal of Food Sciences , 27(2), 71-79.
  • 23. Ogungbenle, H.N. (2003). Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. International Journal of Food Sciences and Nutrition, 54(2), 153-158.
  • 24. Navruz-Varli, S., Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69(2016), 371-376.
  • 25. Meneguetti, Q.A., Brenzan, M.A., Batista, M.R., Bazotte, R.B., Silva, D.R., Garcia Cortez, D.A. (2010). Biological effects of hydrolyzed quinoa extract from seeds of chenopodium quinoa Willd. Journal of medicinal food. 14(6), 653–657.
  • 26. Galwey, N.W. (1992). The potential of quinoa as a multipurpose crop for agricultural diversification: a review. Industrial Crops and Products, 1(2–4), 101–106.
  • 27. Gonzalez, J.A., Konishi, Y., Bruno, M., Valoy, M., Prado, F.E. (2012). Interrelationships among seed yield, total protein and amino acid composition of ten quinoa ( Chenopodium quinoa ) cultivars from two different agroecological regions. Journal of the Science of Food and Agriculture, 92(6), 1222–1229.
  • 28. Maradini Filho, A.M., Pirozi, M.R., Da Silva Borges, J.T., Pinheiro Sant'Ana, H.M., Paes Chaves, J.B., Dos Reis Coimbra, J.S. (2017). Quinoa: nutritional, functional and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618–1630.
  • 29. Alvarez-Jubete, L., Arendt, E.K., Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119 (2), 770-778.
  • 30. Repo-Carrasco-Valencia, R.A., Serna, L.A. (2011). Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Ciencia e Tecnologia de Alimentos, 31(1), 225-230.
  • 31. Güçlü-Üstündağ, Ö., Mazza, G. (2007). Saponins: Properties, Applications and Processing. Critical Reviews in Food Science and Nutrition, 47(3), 231-258.32. Sparg, S.G., Light, M.E., Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219–243.
  • 33. Madl, T., Sterk, H., Mittelbach, M., Rechberger, G.N. (2006). Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. American Society for Mass Spectrometry, 17(6), 795–806.
  • 34. Villacrés, E., Pastor, G., Quelal, M.B., Zambrano, I., Morales, S.H. (2013). Effect of processing on the content of fatty acids, tocopherols and sterols in the oils of quinoa (Chenopodium quinoa Willd), lupine (Lupinus mutablis Sweet), amaranth (Amaranthus caudatus L.) and sangorache (Amaranthus quitensis L.). Global Advanced Research Journal of Food Science and Technology, 2(4), 44–53.
  • 35. Ryan, E., Galvin, K., O’Connor, T.P., Maguire, A.R., O’Brien N.M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Food Human Nutrition, 62, 85–91.
  • 36. Kizelsztein, P., Govorko, D., Komarnytsky, S., Evans, A., Wang, Z., Cefalu, W.T., Raskin, I. (2009). 20-Hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. American Journal of Physiology-Endocrinology and Metabolism, 296(3), E433–439.
  • 37. Foucault, A.S., Even, P., Lafont, R., Dioh, W., Veillet, S., Tome, D., Huneau, J.F., Herman, W.H., Quignard-Boulange, A. (2014). Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet. Physiology & Behavior, 128 (2014), 226–231.
  • 38. Foucault, A.S., Mathe, V., Lafont, R., Even, P., Dioh, W., Veillet, S., Tome, D., Huneau, J.F., Hermier, D., Quignard-Boulange, A. (2012). Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Obesity, 20, 270–277.
  • 39. Wang, Z.Q., Yu, Y., Zhang, X.H., Ribnicky, D., Cefalu, W.T. (2011). Ecdysterone enhances muscle insulin signaling by modulating acylcarnitine profile and mitochondrial oxidative phosphorylation complexes in mice fed a high-fat diet. Diabetes, 1–10.
  • 40. Harborne, J.B., Williams, C.A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504.
  • 41. Repo-Carrasco-Valencia, R.A., Hellström, J.K., Pihlava, J.M., Mattila, P.H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(2010), 128–133.
  • 42. Ahamed, N.T., Singhal, R.S., Kulkarni, P.R., Pal, M. (1998). A lesser-known grain, Chenopodium quinoa: Review of the chemical composition of its edible parts. Food and Nutrition Bulletin, 19(1), 61-69.
  • 43. Brend, Y., Galili, L., Badani, H., Hovav, R., Galili, S. (2012). Total phenolic content and antioxidant activity of red and yellow quinoa (Chenopodium quinoa Willd.) seeds as affected by baking and cooking conditions. Food and Nutrition Sciences, 3, 1150-1155
  • 44. Khan, M.I, Giridhar, P. (2015). Plant betalains: Chemistry and biochemistry. Phytochemistry, 117, 267–295.
  • 45. Tang, H., Watanabe, K., Mitsunaga, T. (2002). Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydrate Polymers, 49(1), 13-22.
  • 46. Esatbeyoğlu, T., Wagner, A.E., Schini-Kerth, V.B., Rimbach, G. (2015). Betanin-A food colorant with biological activity. Molecular Nutrition & Food Research, 59(1), 36–47.
  • 47. Ross, A.B., Zangger, A., Guiraud, S.P. (2014). Cereal foods are the major source of betaine in the Western diet–analysis of betaine and free choline in cereal foods and updated assessments of betaine intake. Food Chemistry, 145, 859–65.
  • 48. Arneja, I., Tanwar, B., Chauhan, A. (2015). Nutritional composition and health benefits of golden grain of 21st century, quinoa (Chenopodium quinoa willd.): A Review. Pakistan Journal of Nutrition, 14 (12), 1034-1040.
  • 49. Zevallos, V.F., Ellis, H.J., Suligoj, T., Herencia, L.I., Ciclitira, P.J. (2012). Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease. The American Journal of Clinical Nutrition, 96, 337–344.
  • 50. Zevallos, V.F., Herencia, L.I., Chang, F., Donnelly, S., Ellis, H.J., Ciclitira, P.J. (2014). Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients. The American Journal of Gastroenterology, 109, 270-278.
  • 51. Laus, M.N., Gagliardi, A., Soccio, M., Flagella, Z., Pastore, D. (2012). Antioxidant activity of free and bound compounds in quinoa (Chenopodium quinoa Willd.) seeds in comparison with durum wheat and emmer. Journal of Food Science, 77, c1150-c1155.
  • 52. Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M.C., Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry,183(2015), 83–90.
  • 53. Tang, Y., Zhang, B., Li, X., Chen, P.X., Zhang, H., Liu, R., Tsao, R. (2016). Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α‑glucosidase and pancreatic lipase inhibitory effects. Journal of Agricultural and Food Chemistry, 64, 1712−1719.
  • 54. Carciochi, R. A., Manrique, G. D., Dimitrov, K. (2014). Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). International Food Research Journal, 21(2), 767-773.
  • 55. Ranilla, L.G., Apostolidis, E., Genovese, M.I., Lajolo, F.M., Shetty, K. (2009). Evaluation of ındigenous grains from the Peruvian Andean Region for antidiabetes and antihypertension potential using in vitro methods. Journal of Medicinal Food, 12(4), 704–713.
  • 56. Pasko, P., Barton, H., Zagrodzki, P., Izewska, A., Krosniak, M., Gawlik, M., Gorinstein, S. (2010). Effect of diet supplemented with quinoa qeeds on oxidative status in plasma and selected tissues of high fructose-fed rats. Plant Foods for Human Nutrition, 65(2), 146-151.
  • 57. Farrinazi-Machado, F.M.V., Barbalho, S.M., Oshiiva, M., Goulart, R., Pessan J, O. (2012). Use of cereal bars with quinoa (Chenopodium quinoa W.) to reduce risk factors related to cardiovascular diseases. Ciência e Tecnologia de Alimentos, 32(2), 239-244.
  • 58. Takao, T., Watanabe, N., Yuhara, K., Itoh, S., Suda, S., Tsuruoka, Y., Nakatsugawa, K., Konishi, Y. (2005). Hypocholesterolemic effect of protein isolated from quinoa (Chenopodium quinoa Willd.) seeds. Food Science and Technology Research, 11(2), 161-167.
  • 59. Gordillo-Bastidas, E., Díaz-Rizzolo, D.A., Roura, E., Massanés, T., Gomis, R. (2106). Quinoa (Chenopodium quinoa Willd), Nutritional Value to Potential Health Benefits: An Integrative Review. Journal of Nutrition & Food Sciences, 6(497). Retrieved November 13, 2017, from https://www.omicsonline.org/open-access/quinoa-chenopodium-quinoa-willd-from-nutritional-value-to-potential-health-benefits-an-integrative-review-2155-9600-1000497.php?aid=72704
  • 60. Graf, B.L.,Poulev, A.,Kuhn,P.,Grace, M.H.,Lila, M.A.,Raskin, I. (2014). Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chemistry, 163 (2014), 178–185.