BAZI YENİ 4-SÜBSTİTÜE-3-(MORFOLİNOMETİL)-4H-1,2,4-TRİAZOL-5-TİYOL TÜREVLERİNİN MİKRODALGA YARDIMIYLA SENTEZİ

        Amaç: Bu çalışmanın amacı, mikrodalga sentez sistemi kullanarak 4-((5-((siklohekzilmetil)tiyo)-4-R1-4H-1,2,4-triazol-3-il)metil)morfolinler ile 4-((4-R1-5-(piridin-2-iltiyo)-4H-1,2,4-triazol-3-il)metil)morfolinlerin yeni serisini sentezlemektir.          Gereç ve Yöntem: Başlangıç bileşikleri olarak 4-R1-3-(morfolinometil)-4H-1,2,4-triazol-5-tiyoller (burada, R=H, methyl, ethyl, phenyl, amino) kullanılır.  Sentez, bir mikrodalga sentez sistemi Milestone Flexi Wave kullanılarak gerçekleştirildi. Sentezlenen bileşiklerin yapısı modern analiz yöntemleri olan 1H NMR, 13C NMR-spektroskopisi, element analizi ve gaz kromatografisi-kütle spektrometresi (GS/MS) kullanılarak doğrulandı.         Sonuç ve Tartışma: Yapılan deney sonucunda sentez yöntemi mikrodalga ışınımıyla 4-((5-((siklohekzilmetil)tiyo)-4-R1-4H-1,2,4-triazol-3-il)metil)morfolinler and 4-((4-R1-5-(piridin-2-iltiyo)-4H-1,2,4-triazol-3-il)metil)morfolinler için optimize edilmiştir Tanımlanan tüm koşullar altında reaksiyonların sonuna kadar geldiği ancak reaksiyonun t = 10 min, T = 160 оС parametreleri ile  teknolojik olarak en uygun olduğu tespit edilmiştir. Bu yaklaşım enerji maliyetlerini düşürmeyi ve hedef bileşiklerin verimini arttırmayı sağlamıştır. Sonuç olarak, ileri farmakolojik çalışmalarda biyolojik bileşikler olarak kullanılabilecek bir yeni 1,2,4-triazol türevi sınıfı elde edilmiştir.

MICROWAVE-ASSISTED SYNTHESIS OF SOME NEW DERIVATIVES OF 4-SUBSTITUTED-3-(MORPHOLINOMETHYL)-4H-1,2,4-TRIAZOLE-5-THIOLES

        Objective: The purpose of this work is to synthesize new series of 4-((5-((cyclohexylmethyl)thio)-4-R1-4H-1,2,4-triazol-3-yl)methyl)morpholines and 4-((4-R1-5-(pyridin-2-ylthio)-4H-1,2,4-triazol-3-yl)methyl)morpholines using a microwave synthesis system.        Material and Method: As starting compounds are used 4-R1-3-(morpholinomethyl)-4H-1,2,4-triazole-5-thioles (where, R1=H, methyl, ethyl, phenyl, amino). Synthesis was carried out using a microwave synthesis system Milestone Flexi Wave. The structure of synthesized compounds is confirmed by the use of modern methods of analysis 1H NMR, 13C NMR spectroscopy, elemental analysis and gas chromatography–mass spectrometry (GS/MS).         Result and Discussion: As a result of the conducted experiment, the synthesis method is optimized for 4-((5-((cyclohexylmethyl)thio)-4-R1-4H-1,2,4-triazol-3-yl)methyl)morpholines and 4-((4-R1-5-(pyridin-2-ylthio)-4H-1,2,4-triazol-3-yl)methyl)morpholines by microwave irradiation. It was established that the reactions proceed to the end in all described conditions, but the reaction with the parameters t=10 min, T=160 оС is the most technologically optimal. This approach has allowed reducing energy costs and increasing the yield of target compounds.  As a result, a class of new derivatives of 1,2,4-triazole has been obtained, which can be used in further pharmacological studies as valuable biological agents.

___

1. Arnold, F. H. (2018). Directed evolution: bringing new chemistry to life. Angewandte Chemie International Edition, 57(16), 4143-4148.

2. Gerry, C. J., & Schreiber, S. L. (2018). Chemical probes and drug leads from advances in synthetic planning and methodology. Nature Reviews Drug Discovery, 17(5), 333.

3. Minozzi, C., Caron, A., Grenier‐Petel, J. C., Santandrea, J., & Collins, S. K. (2018). Heteroleptic Copper (I)‐Based Complexes for Photocatalysis: Combinatorial Assembly, Discovery, and Optimization. Angewandte Chemie International Edition, 57(19), 5477-5481.

4. Bédard, A. C., Adamo, A., Aroh, K. C., Russell, M. G., Bedermann, A. A., Torosian, J. & Jamison, T. F. (2018). Reconfigurable system for automated optimization of diverse chemical reactions. Science, 361(6408), 1220-1225.

5. Mermer, A., Demirbaş, N., Şirin, Y., Uslu, H., Özdemir, Z., & Demirbaş, A. (2018). Conventional and microwave prompted synthesis, antioxidant, anticholinesterase activity screening and molecular docking studies of new quinolone-triazole hybrids. Bioorganic chemistry, 78, 236-248.

6. Basoglu Ozdemir, S., Demirbas, N., Demirbas, A., Ayaz, F. A., & Çolak, N. (2018). Microwave‐Assisted Synthesis, Antioxidant, and Antimicrobial Evaluation of Piperazine‐Azole‐Fluoroquinolone Based 1,2,4‐Triazole Derivatives. Journal of Heterocyclic Chemistry, 55(12), 2744-2759.

7. Aljohani, G., Said, M. A., Lentz, D., Basar, N., Albar, A., Alraqa, S. Y., & Ali, A. A. S. (2019). Microwave-Assisted Synthesis of Mono-and Disubstituted 4-Hydroxyacetophenone Derivatives via Mannich Reaction: Synthesis, XRD and HS-Analysis. Molecules, 24(3), 590-604.

8. Bushueva, I., Parchenko, V., Shcherbyna, R., Safonov, A., Kaplaushenko, A., Gutyj, B., & Hariv, I. (2017). Tryfuzol-new original veterinary drug. J. Fac. Pharm. Ankara/Ankara Ecz. Fak. Derg, 41(1), 42-49.

9. Shcherbyna, R., Parchenko, V., Martynyshyn, V., & Hunchak, V. (2018). Evaluation of acute and subacute toxicity of oil liniment based on 4-((5-(decylthio)-4-methyl-4H-1,2,4-triazol-3-yl)methyl)morpholine. J. Fac. Pharm. Ankara/Ankara Ecz. Fak. Derg, 42 (1), 43-52. Retrieved from http://dergipark.gov.tr/jfpanu/issue/42653/514314.

10. Shcherbyna, R. O., Danilchenko, D. M., Parchenko, V. V., Panasenko, O. I., Knysh, E. H., Hromyh, N. A., & Lyholat, Y. V. (2017). Studying of 2-((5-R-4-R-1-4H-1, 2, 4-triazole-3-Yl) Thio) acetic acid salts influence on growth and progress of blackberries (KIOWA Variety) propagules. Research Journal of Pharmaceutical Biological and Chemical Sciences, 8(3), 975-979.

11. Shcherbyna, R. O., Parchenko, V. V., Safonov, A. A., Bushueva, I. V., Zazharskiy, V. V., Davydenko, P. O. & Borovic, I. V. (2018). Synthesis and research of the impact of new derivatives of 4-R-3 (morpholinomethyl)-4H-1,2,4-triazole-5-thiol on cultural attributes of pathogenic M. Bovis. Research Journal of Pharmaceutical Biological and Chemical Sciences, 9(2), 70-79.

12. Samelyuk, Y. G., & Kaplaushenko, A. G. (2014). Synthesis of 3-alkylthio(sulfo)-1,2,4-triazoles, Containing methoxyphenyl substituents at C5atoms, Their antipyretic activity, Propensity to adsorption and acute toxicity. Journal of Chemical and Pharmaceutical Research, 6(5), 1117-1121.

13. Rud, A. M., Kaplaushenko, A. G., Pruglo, Y. S., & Frolova, Y. S. (2018). Establishment of diuretic activity indicators for (3-thio-4-R-4-H-1,2,4-triazole-5-yl)(phenyl) methanols and their derivatives. Aktualʹnì Pitannâ Farmacevtičnoï ì Medičnoï Nauki ta Praktiki, 2018(2), 215-219.

14. Hulina, Y.S., & Kaplaushenko, A. G. (2018). Synthesis, physicochemical properties and further transformations in the series 5 - ((1H-tetrazol-1-yl) methyl) -4-R-4H-1, 2, 4-triazol-3-thiols. Biopharmaceutical Journal, 10 (1), 26-30.

15. Ignatova, T. V., Kaplaushenko, A. H., & Frolova, Y. S. (2018). The synthesis, study of 6-((5-phenethyl-4-R-1,2,4-triazole-3-ylthio)pyridyn-3-yl)-(alkyl, heteryl) methanimines and their derivatives. Žurnal organìčnoï ta farmacevtičnoï hìmìï, 16(4 (64)), 34-39.

16. Shcherbyna, R. O. (2014). Pharmacological activity analysis of the 1, 2, 4-triazole derivatives. Pharmaceutical Journal, (4), 145-150.

17. Kaplaushenko A. Synthesis, structure and biological activity of 4-mono and 4,5-di-substituted 1,2,4-triazoles-3-thione.(Doctoral dissertation, AG Kaplaushenko- Zaporizhzhya, 2012.-387p).

18. Shcherbyna, R. A., Panasenko, A. I., Knysh, E. G., & Varinsky, B. A. (2014). Synthesis and Physicochemical Properties of 2-((4-R-3-(morpholinomethylene)-4H-1,2,4-triazol-5-yl)thio)acetic acids. Aktualʹnì Pitannâ Farmacevtičnoï ì Medičnoï Nauki ta Praktiki, 3 (16), 18-21.