Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production

Mikroalgler, geleceğin yenilenebilir enerji kaynaklarından görülmelerine rağmen, günümüzde büyük ölçekli üretimleri oldukça pahalı bir süreçtir. Mikroalgler tarımsal kaynaklı atık sularda yer alan kimyasalları ve ağır metalleri besin kaynağı olarak kullanarak üremelerini devam ettirebilirler. Tarımsal atık sulardan önemli bir tanesi de peynir altı suyudur. Peynir atık suyu içerdiği yoğun protein nedeniyle mikroalg yetiştirilmesi için uygun bir besin kaynağı olarak da kullanılabilir. Bu çalışmada, 500 ml’lik 4 farklı yetiştirme ortamı hazırlanarak 1)Mavi yeşil alg ortamı (BG11) Chlorella vulgaris 2) Mavi yeşil alg ortamı (BG11) Peynir altısuyu (CW) Chlorella vulgaris 3) Bold’s Basal ortamı (BMM) Chlorella vulgaris and 4)Çeşme suyu (TW) Chlorella vulgaris ortamlarında üretilmeye çalışılmıştır. 21 gün süren denemeler sonucunda en yüksek, hücre sayısı, biyomas ve oransal yağ miktarı artışı Bold’s Basal ortamı  Peynir altısuyu ve Chlorella vulgaris ortamında sırasıyla  79.7x106 cell mL-1 , 10.14 g L-1 ve %20.7 olarak gerçekleşmiştir. Yapılan denemelerde peynir altı suyunun Chlorella vulgaris üretiminde besin kaynağı olarak kullanılabileceği sonucuna ulaşılmıştır. Sonuçlar istatistiksel analizlerle de desteklenmiştir

Çeşitli yetiştirme ortamlarında ek besin olarak kullanılan peynir altı suyunun biyodizel hammaddesi Chlorella vulgaris’in üretim potansiyeline etkisinin belirlenmesi

Large-scale production of microalgae is a costly process because of high costs of microalgae feed, artificial lighting and operational costs.  Whey (CW) is one of the agricultural waste materials which contains high amounts of protein and minerals and is considered as a feed source for Chlorella vulgaris. The objective of this research was to determine the effects of wheyon biomass production of Chlorella vulgaris. Chlorella vulgaris was produced in four different growth medium of 1) Blue Green Medium(BG11) Chlorella vulgaris 2) Blue Green Medium(BG11) whey (CW) Chlorella vulgaris 3) Bold’s Basal Medium (BMM) Chlorella vulgaris and 4) Tap water(TW) Chlorella vulgaris. After 21 days of experimentation, the highest number microalgae cells, biomass gain and lipid were observed in Bold's Basal Medium (BMM) Chlorella vulgaris growth medium containing as 79.7x106 cell mL-1, 10.14 g L-1 and 20.7%, respectively. It is found that wheycan be considered as a promising feed source for the production of Chlorella vulgaris.

___

  • Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M., 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), doi:10.1016/j.sjbs.2012.04.005.
  • Acien, F.G., Fernandez, J.M., Magan, J.J., Molina, E., 2012. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6): 1344-1353. doi:10.1016/j.biotechadv.2012.02.005.
  • Acien, F.G., Gomez-Serrano, C., Morales-Amaral, M.M., Fernandez-Sevilla, J.M., Molina-Grima, E., 2016.
  • Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21): 9013-9022. doi:10.1007/s00253-016-7835-7.
  • Adamczyk, M., Lasek, J., Skawinska, A., 2016. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Applied Biochemistry and Biotechnology, 179(7): 1248-1261. doi:10.1007/s12010- 016-2062-3.
  • Amaro, H.M., Macedo, A.C., Malcata, F.X., 2012. Microalgae: An alternative as sustainable source of biofuels? Energy, 44(1): 158-166.
  • Aravinthan, V., Story, N., Yusaf, T., 2014. Nutrient removal of nursery and municipal wastewater using Chlorella vulgaris microalgae for lipid extraction. Desalination and Water Treatment, 52(4-6): 727-736.
  • Cai, T., Park, S.Y., Li, Y.B., 2013. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable & Sustainable Energy Reviews, 19: 360-369. doi:10.1016/j.rser.2012.11.030.
  • Giovanardi, M., Baldisserotto, C., Daglia, M., Ferroni, L., Sabia, A., Pancaldi, S., 2016. Morpho-physiological aspects of Scenedesmus acutus PVUW12 cultivated with a dairy industry waste and after starvation. Plant Biosystems, 150(4): 767- 775.doi:10.1080/11263504.2014.991361.
  • Girard, J.M., Roy, M.L., Ben Hafsa, M., Gagnon, J., Faucheux, N., Heitz, M., Deschenes, J.S., 2014.
  • Mixotrophic cultivation of green microalgae Scenedesmus obliquus on wheypermeate for biodiesel production. Algal Research-Biomass Biofuels and Bioproducts, 5: 241-248. doi:10.1016/j.algal.2014.03.002.
  • Glemser, M., Heining, M., Schmidt, J., Becker, A., Garbe, D., Buchholz, R., Bruck, T., 2016. Application of lightemitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology, 100(3): 1077-1088. doi:10.1007/s00253-015-7144-6.
  • Gupta, P.L., Lee, S.M., Choi, H.J. 2015. A mini review: photobioreactors for large scale algal cultivation. World Journal of Microbiology & Biotechnology, 31(9): 1409- 1417. doi:10.1007/s11274-015-1892-4.
  • Hodaifa, G., Sanchez, S., Martinez, M.E., Orpez, R., 2013. Biomass production of Scenedesmus obliquus from mixtures of urban and olive-oil mill wastewaters used as culture medium. Applied Energy, 104: 345-352. doi:10.1016/j.apenergy.2012.11.005.
  • Hwang, J.H., Church, J., Lee, S.J., Park, J., Lee, W.H., 2016. Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science, 33(11): 882-897.
  • Ismail, D., 2016. Utilization Of Chlorella Vulgaris To Fixate A High Concentration Of Carbon Dioxide In A CompostBased Medium. International Journal of Technology, 7(1): 168-175.
  • Kang, Z., Kim, B.H., Ramanan, R., Choi, J.E., Yang, J.W., Oh, H.M., Kim, H.S., 2015. A Cost Analysis of Microalgal Biomass and Biodiesel Production in Open Raceways Treating Municipal Wastewater and under Optimum Light Wavelength. Journal of Microbiology and Biotechnology, 25(1): 109-118. doi:10.4014/jmb.1409.09019.
  • Koc, C., 2015. Comparing Growth Phase of Three Microalgae Species under Different Illumination Sources in a PhotoBioreactor (Pbr). Fresenius Environmental Bulletin, 24(12a): 4435-4445.
  • Koc, C., Anderson, G. A., Kommareddy, A. 2013. Use of Red and Blue Light-Emitting Diodes (LED) and Fluorescent Lamps to Grow Microalgae in a Photobioreactor. Israeli Journal of Aquaculture-Bamidgeh, 65.
  • Krustok, I., Odlare, M., Shabiimam, M.A., Truu, J., Truu, M., Ligi, T., Nehrenheim, E., 2015. Characterization of algal and microbial community growth in a wastewater treating batch photo-bioreactor inoculated with lake water. Algal Research-Biomass Biofuels and Bioproducts, 11: 421-427. doi:10.1016/j.algal.2015.02.005.
  • Lee, C.G., Palsson, B.O., 1995. Light-Emitting Diode-Based Algal Photobioreactor with External Gas-Exchange. Journal of Fermentation and Bioengineering, 79(3): 257- 263. doi:Doi 10.1016/0922-338x(95)90613-5.
  • Lee, E., Pruvost, J., He, X., Munipalli, R., Pilon, L., 2014. Design tool and guidelines for outdoor photobioreactors. Chemical Engineering Science, 106: 18-29. doi:10.1016/j.ces.2013.11.014.
  • Lu, W.D., Wang, Z.M., Wang, X.W., Yuan, Z.H., 2015. Cultivation of Chlorella sp using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 192: 382-388. doi:10.1016/j.biortech.2015.05.094.
  • Mehrabadi, A., Craggs, R., Farid, M.M., 2016. Biodiesel production potential of wastewater treatment high rate algal pond biomass. Bioresource Technology, 221: 222- 233. doi:10.1016/j.biortech.2016.09.028.
  • Nwoba, E.G., Ayre, J.M., Moheimani, N.R., Ubi, B.E., Ogbonna, J. C., 2016. Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal ResearchBiomass Biofuels and Bioproducts, 17: 268-276. doi:10.1016/j.algal.2016.05.022.
  • Olivieri, G., Marzocchella, A., Andreozzi, R., Pinto, G., Pollio, A. 2011. Biodiesel production from Stichococcus strains at laboratory scale. Journal of Chemical Technology and Biotechnology, 86(6): 776-783. doi:10.1002/jctb.2586.
  • Olivieri, G., Russo, M.E., Giardina, P., Marzocchella, A., Sannia, G., Salatino, P., 2012. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus. Journal of Industrial Microbiology & Biotechnology, 39(5): 719-729. do.i:10.1007/s10295-011- 1072-y.
  • Olkiewicz, M., Torres, C.M., Jimenez, L., Font, J., Bengoa, C., 2016. Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge. Bioresource Technology, 214: 122-131. doi:10.1016/j.biortech.2016.04.098.
  • Oncel, S.S., 2013. Microalgae for a macroenergy world. Renewable & Sustainable Energy Reviews, 26, 241-264. doi:10.1016/j.rser.2013.05.059.
  • Panoutsou, C., Bauen, A., Bottcher, H., Alexopoulou, E., Fritsche, U., Uslu, A., Maniatis, K., 2013. Biomass Futures: an integrated approach for estimating the future contribution of biomass value chains to the European energy system and inform future policy formation. Biofuels Bioproducts & Biorefining-Biofpr, 7(2): 106- 114. doi:10.1002/bbb.1367.
  • Parupudi, P., Kethineni, C., Dhamole, P. B., Vemula, S., Allu, P. R., Botlagunta, M., Ronda, S. R., 2016. CO2 fixation and lipid production by microalgal species. Korean Journal of Chemical Engineering, 33(2): 587-593. doi:10.1007/s11814-015-0152-5.
  • Raes, E.J., Isdepsky, A., Muylaert, K., Borowitzka, M.A., Moheimani, N.R., 2014. Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. Journal of Applied Phycology, 26(1): 247- 255. doi:10.1007/s10811-013-0077-5.
  • Richmond, A., 2004. Handbook on Microalgal Culture: Biotechnology and Applied Phycology. 23, 37: 125-172. Iowa State Press, Iowa: Blackwell Publishing.
  • Schulze, P.S.C., Pereira, H.G.C., Santos, T.F.C., Schueler, L., Guerra, R., Barreira, L.A., Varela, J.C.S., 2016. Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Research, 16: 387- 398. doi:http://dx.doi.org/10.1016/j.algal.2016.03.034.
  • Singh, N.K., Dhar, D.W., 2011. Microalgae as second generation biofuel. A review. Agronomy for Sustainable Development, 31(4): 605-629. doi:10.1007/s13593-011- 0018-0.
  • Slade, R., Bauen, A., 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass & Bioenergy, 53: 29-38. doi:10.1016/j.biombioe.2012.12.019.
  • Tsolcha, O.N., Tekerlekopoulou, A.G., Akratos, C.S., Bellou, S., Aggelis, G., Katsiapi, M., Vayenas, D.V., 2016.
  • Treatment of second wheyeffluents using a Choricystisbased system with simultaneous lipid production. Journal of Chemical Technology and Biotechnology, 91(8): 2349- 2359. doi:10.1002/jctb.4829.
  • Tu, Q. S., Lu, M.M., Thiansathit, W., Keener, T.C., 2016. Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process. Water Environment Research, 88(1): 21-28. doi:10.2175/106143015x14362865227517.
  • Vaiciulyte, S., Padovani, G., Kostkeviciene, J., Carlozzi, P., 2014. Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity. Energies, 7(6): 3840-3857. doi:10.3390/en7063840.
  • Wang, L.A., Min, M., Li, Y.C., Chen, P., Chen, Y.F., Liu, Y. H., Ruan, R., 2010. Cultivation of Green Algae Chlorella sp in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162(4): 1174-1186. doi:10.1007/s12010- 009-8866-7.
  • Wu, Y.H., Hu, H.Y., Yu, Y., Zhang, T. Y., Zhu, S. F., Zhuang, L. L., Lu, Y. 2014. Microalgal species for sustainable biomass/lipid production using wastewater as resource: A review. Renewable & Sustainable Energy Reviews, 33: 675-688. doi:10.1016/j.rser.2014.02.026.
  • Yeh, K. L., Chang, J. S., 2012. Effects of cultivation conditions and medium composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105: 120-127. doi:10.1016/j.biortech.2011.11.103.
  • Zeng, X.H., Danquah, M. K., Zheng, C., Potumarthi, R., Chen, X. D., Lu, Y. H., 2012. NaCS-PDMDAAC immobilized autotrophic cultivation of Chlorella sp for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 187: 185-192. doi:10.1016/j.cej.2012.01.119.
  • Zheng, J., Li, Z.B., Lu, Y.H., Tang, X.M., Lu, B., Li, Y.Y., Zhou, J. X., 2011. Cultivation of the microalga, Chlorella pyrenoidosa, in biogas wastewater. African Journal of Biotechnology, 10(61): 13115-13120.
  • Zhu, L.D., Li, Z.H., Hiltunen, E., 2016. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. Biomed Research International. doi:Artn 8792548 10.1155/2016/8792548.
Anadolu Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-8750
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniv. Ziraat Fak.
Sayıdaki Diğer Makaleler

Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production

Caner Koç, Hüseyin DURAN

Biber genotiplerinin genetik çeşitliliklerinin srap markörleri kullanılarak belirlenmesi

M.Kadri Bozkalfa, Tansel Kaygısız Aşcıoğlu, Dursun Eşiyok

Erzurum İli meralarında doğal olarak yetişen farklı baklagil yem bitkilerinin nispi yem değerlerinin belirlenmesi

Esra GÜRSOY, Muhlis Macit

Farklı substrat ve besin çözeltisi miktarının domates bitkisinin azot, fosfor ve potasyumdan yararlanma oranına etkisi

Güney Akınoğlu, Ahmet Korkmaz, Ayhan Horuz

Kivilerde kök çürüklüğü hastalığına neden olan bazı funguslara karşı organik ve inorganik tuzların engelleyici etkilerinin belirlenmesi

Mehmet Yaman, Muharrem Türkkan

Factors affecting milk production cost in dairy cattle farms

Damla ÖZSAYIN

Organik ve kimyasal azot kaynağının ıspanak bitkisinin bazı besin içeriği ve nitrat birikimi üzerine etkileri

Damla BENDER ÖZENÇ, Gültekin ŞENLİKOĞLU

Farklı sulama suyu tuzluluk seviyelerinin keten (Linum usitatissimum L.)’in çimlenme ve erken fide gelişimi üzerine etkisi

Mehmet Sait KİREMİT, Muhammet Safa HACIKAMİLOĞLU, Hakan ARSLAN, Orhan KURT

Alternaria burnsii’nin gelişimi üzerine farklı kültürel koşulların etkisi ve rDNA-ITS sekansına dayanan filogenetik analizi

Harun Bayraktar, Olgac Yılmaz, Göksel Özer

Azotlu çözelti ile dip sürgünü temizliğinin fındıkta verim ve meyve kalitesi üzerine etkileri

Ümit Serdar, Coşkun Gülser, Burak AKYÜZ, Ayşegül Balta, Yusuf Çil, Fatma Yılmaz Figen