Evaluating mycorrhizal dependency of some p epper genotypes during seedling stage

Etkili mikorizal ilişki Akdeniz Bölgesindeki yıpranan topraklarda sürdürülebilir verimlilikte fosfor döngüsü için önemlidir. Bu çalışma seçilmiş biber (Capsicum annuum L.) genotiplerin mikorizal bağımlılığı ve onun sürgün fosfor kapsamı ile verim özellikleri üzerine etkisinin belirlenmesi amacıyla yürütülmüştür. Rastgele seçilmiş 20 biber genotipi mikorizal bağımlılığın belirlenmesi için cam sera koşullarında 2 dönem halinde testlenmiştir. Biber fideleri mikorizalı ( Glomus etunicatum ) veya mikorizasız olarak 6 hafta boyunca yetiştirilmiştir. Hasat zamanında kök ve sürgün bioması, kök kolonizasyonu ve sürgün P konsantrasyonu belirlenmiştir. Elde edilen sonuçlara göre biber genotipleri arasında mikorizal bağımlılık önemli varyasyon görülmüştür. Birinci denemede mikorizal bağımlılık %39 -84 arasında değişirken, ikinci denemede %21 -57 arasında değişmiştir. A300 ve A287 biber genotipleri en yüksek mikorizal bağımlılığa sahip olm uştur. Biber genotipleri arasındaki ortalama kök mikoriza infeksiyonu %48 olarak belirlenmiştir. Sürgün P konsantrasyonu %0.24 -0.42 arasında değişmiş ve ortalama %0.34 olarak gerçekleşmiştir. Elde edilen bulgular biber genotipleri arasındaki önemli mikoriz al bağımlılığı açıklamaktadır. Yüksek mikorizal bağımlılık gösteren genotipler biber çeşidi geliştirmede yüksek potansiyele sahip genetik materyal olabilecektir.

Bazı biber genotiplerinin fide döneminde mikorizal b ağımlılığının değerlendirilmesi

Effective meycorhizal associations are important for phosphorus recycling to sustain plant productivity on degraded soil in the coastal region of Mediterranean. This study was conducted to determine mycorrhizal dependency of selected pepper (Capsicum ann u um L.) genotypes and its effects on yield components and shoot phosphorus (P) concentration . Twenty pepper genotypes were randomly selected to determine the (mycorrhizal dependency ( MD )) under greenhouse at two time periods . Pepper seedlings were grown either with (Glomus etunicatum) or without mycorrhizal inoculation over a period of 6 -weeks . At harvest, s hoot and root biomass , root colonization and shoot P con centrations were determined . Results showed that MD significantly varied among the pepper genotypes. It ranged from 39 to 8 4 % in the first experiment and from 2 1 to 5 7 % in the second experiment. The pepper genotypes A300 and A287 exhibited the highest mycorrhizal dependency . Averaged across the pepper genotypes, averag e root mycorhizal infection was 48%. The shoot P concentration ranged from 0.24 to 0.42 % with an average of 0.34%. Results suggested to a significant MD -explain among pepper genotypes . The genotypes showing high mycorrhizal dependency could be a potential genetic material for pepper cultivar improvement.

___

  • Azcon- Aguilar , C., Barea, J.M., 1997. Applying mycorrhiza biotechnology to horticulture: Significance and potentials. Sci. Hort. 68, 1 – 24.
  • Boomsma, C. R., Vyn, T.J. , 2008. Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis. Field Crops Res. 108, 14–31.
  • Cavagnaro, T. R., Jackson, L.E. Six, J., Ferris, H., Goyal, S., Asami, D., Scow, K.M., 2006. Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil, 282, 209–225.
  • Cimen, I., Pirinc, V., Sagir, A., Akpinar, C., Guzel, S., 2009. Effects of solarization and vesicular arbuscular mycorrhizal fungus (VAM) on phytopthora blight ( Phytophthora capsici leonian) and yield in pepper. Afri. J . Biotec. 8, 4884- 4894.
  • Dare, Mo ., Abaidoo, Rc., Fagbola O., Asiedu, R . , 2008. Genetic Variation and Genotype X Environment Interaction in Yams ( Dioscorea Spp.) For Root Colonization by Arbuscular Mycorrhiza. J . Food Agri. and Envir . 6 , 227 -233.
  • Elsen, A., Baimey, H., Swennen R. , De Waele, D. , 2003. Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars ( Musa spp.) differing in nematode susceptibility. Plant Soil, 256, 303 -313.
  • Giovannetti, M., Mosse, B., 1980. An Evaluation of techniques for measuring vesicular - arbuscular mycorrhiza in roots. New Phytol. 84, 489- 500.
  • Gohre,V., Paszkowski, U., 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223 , 1115–1122.
  • Goicoechea, N., Garmendia, I., Sanchez- Diaz, M., Aguirreolea, J., 2010. Arbuscular mycorrhizal fungi (AMF) as bioprotector agents against wilt induced by Verticillium spp. in pepper. S.J. Agri. Rese. 8, 25- 42.
  • Kafkas, S., Ortas, I., 2009. Various Mycorrhizal Fungi Enhance Dry Weights, P and Zn Uptake of Four Pistacia Species. J. Plant Nutr. 32, 146–159.
  • Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S.,Tuna, A. L., Cullu, M.A. , 2009. The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci. Hort. 121 , 1 –6.
  • Kim, K., Yim, W., Trivedi, P., Madhaiyan, M., Boruah, H.P.D., Islam, M.R., Lee, G., Sa, T., 2010. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper ( Capsicum annuum L.). Plant Soil, 327, 429- 440.
  • Koske, R.E., Gemma, J.N., 1989. A modified procedure for staining roots to detect VAM. Mycol. Res. 92, 486 -505.
  • Li, Y.H., Yanagi, A. , Miyawaki, Y., Okada, T., Matsubara, Y., 2010. Disease tolerance and changes in antioxidative abilities in mycorrhizal s trawberry p lants . J. Japan. Soc. Sci. Hort. 79, 174- 178.
  • Martin, C.A., Stutz, J.C., 2004. Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza, 14, 241 -244.
  • Olsen, S.R., Dean, L.A., 1965. Phosphorus. Chemical and microbiological properties. In: Black, C. A. (Ed.), Methods of Soil Analysis, Part 2. Am. Soc. Agr ., Madison, WI, USA, p1035- 1048.
  • Ortas, I., 1994. The effect of different forms of and rates of nitrogen and different rates of phosphorus fertilizers on rhizosphere pH and P uptake in mycorrhizal and non- mycorrhizal sorghum plants. Ph.D. Thesis, University of Reading, UK.
  • Ortas, I., Ortakcı, D., Kaya, Z., Cınar, A., Onelge, N., 2002. Mycorrhizal dependency of sour orange ( Citrus aurantium L.) In term of phosphorus and zinc nutrition by different levels of phosphorus and zinc application. J. Plant Nutr. 25, 1263 – 1279.
  • Ortaş, I., Sari, N., Akpinar, C., 2003. Effects of mycorrhizal inoculation and soil fumigation on the yield and nutrient uptake of some solanaceas crops (tomato, eggplant and pepper) under field conditions. Agr. Med. 133, 249 -258.
  • Ortas, I., Akpinar, C., 2006. Response of kidney bean to arbuscular mycorrhizal inoculation and mycorrhizal dependency in P and Zn deficient soils. Acta Agric. Scand., Sect. B – Plant Soil Sci. 56, 101 – 109.
  • Ortas, I., Varma, A., 2007. Field trials of bioinoculants. Chapter 26. In: Modern Tools and Techniques. (eds. Oelmüller R and Varma A) Springer - Verlag, Germany. 11, 397- 413.
  • Ortas, I., 2010. Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditi ons. S. J. Agr. Res. 8, 116- S122.
  • Ortas, I., Akpinar, C., 2011. Response of maize genotypes to several mycorrhizal inoculums in terms of plant growth, nutrient uptake and spore production. J . Plant Nutr . 34, 1 –18.
  • Ortas, I., Sari, N., Akpinar, C., Yetisir, H. , 2011. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Sci. Horti. 128 , 92–98.
  • Plenchette, C., Fortin, J.A., Furlan, V., 1983. Growth-responses of several plant- species to mycorrhizae in a soil of moderate P- fertility. 1. Mycorrhizal dependency under field conditions. Plant Soil 70, 199- 209.
  • Pozo, M.J., Azcón- Aguilar , C. , 2007 Unravelling mycorrhiza- induced resistance. Cur . Opin. Plant Bio . 10 , 393- 398.
  • Sari, N., Ortas, I., Yetisir, H., 2002. Effect of mycorrhizae inoculation on plant growth, yield, and phosphorus uptake in garlic under field conditions. Commun. Soil Sci. Plant Anal. 33, 2189- 2201.
  • Sensoy S., Demir, S., Turkmen, O., Erdinc, C., Savur, O. , 2007. Responses of some differ ent pepper ( Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Sci. Hort. 113. 92–95.
  • Singh, S., Pandey, A., Palni, L.M.S. , 2008. Screening of arbuscular mycorrhizal fungal consortia developed from the rhizospheres of natural and cultivated tea plants for growth promotion in tea Camellia sinensis (L.) O. Kuntze]. Pedobiologia, 52, 119–125.
  • Smith, S.E., Read, D.J., 2008. Mycorrhizal Symbiosis. Academic Press, San Diego, CA. Tawaraya, K., 2003. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci . Plant Nutr , 49, 655–668.
  • Tawaraya, K., Tokairin, K. , Wagatsuma, T. , 2001 . Dependence of Allium fistulosum cultivars on the arbuscular mycorrhizal fungus, Glomus fasciculatum. Appli. Soil Eco. 17, 119 - 124 .
  • Turkmen, O., Demir, S., Sensoy, S., Dursun, A., 2005. Effects of arbuscular mycorrhizal fungus and humic acid on the seedling development and nutrient content of pepper grown under saline soil conditions. J. Biol. Sci. 5, 568–574.
  • Wu, Q.S. , Xia, R.X. , 2006 . Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well -watered and water stress conditions. J. Plant Phys . 163 , 417- 425.
  • Yucel, C., Ozkan, H., Ortas, I ., Yagbasanlar, T ,. 2009 . Screening of wild emmer wheat accessions ( Triticum turgidum subsp. dicoccoides ) for mycorr hizal dependency. Turk J . Agric. For . 33 , 513- 523.