Fındık Zurufu ve Biyoçarından Üretilen Demir Nanopartiküllerinin (FeONP) Yaşlanmış Börülce Tohumlarında Çimlenme Üzerine Etkisi

Amaç: Bu çalışmada, fındık zurufu ve biyoçarından yeşil sentez yöntemiyle elde edilen Fe oksit nanopartiküllerinin (FeONP) yaşlanmış ve düşük çimlenme gücüne sahip börülce tohumlarının çimlenmesi üzerine etkilerinin araştırılması amaçlanmıştır. Materyal ve Yöntem: Fındık zurufu ve fındık zurufundan yavaş piroliz yoluyla (>400 °C) elde edilen biyoçar yeşil sentez yoluyla nano partiküllerine ayrıştırılmış ve FeONP biyosentezlenerek nano fındık zurufu ve biyoçar ile kaplanarak partikül şekli ve boyutu SEM (LEO 1430 VP) ile ölçülerek organik bazlı FeONP üretilmiştir. Bu deneme, fındık zurufundan ve biyoçarından üretilen organik bazlı FeONP ile 4 farklı dozda (0, 40, 80 ve 160 mg Fe L-1) 3 tekerrürlü olarak toplam 24 petride yürütülmüştür. Denemede, çimlenme oranı, çimlenme süresi ve çimlenme indeksi hesaplanmıştır. Bulgular: Bu çalışmada, fındık zurufu ve bu zuruflardan elde edilen biyoçardan bitkisel bazlı FeONP sentezlenmiştir. Elde edilen FeONP’lerin karakterizasyonu, taramalı elektron mikroskobu (SEM) ile ortaya konulmuştur. Üretilen nano malzemelerde 6-100 nm boyutlarında küresel görünümlü yapılar gözlemlenmiştir. Çimlenme denemesi sonuçlarına göre kontrol ile karşılaştırıldığında, priming ajanı olarak kullanılan 40 mg Fe L-1 içeren FeONP’leri yaşlanmış börülce tohumlarının çimlenme oranını %27, çimlenme indeksini %33 artırmış ve çimlenme süresini %13 azaltmıştır. Sonuç: Bu çalışma, fındık zurufu ve biyoçarından bitkisel bazlı FeONP’lerin üretilebileceğini ortaya koymuş ve FeONP’lerinin yaşlanmış börülce tohumlarının çimlenme gücünü iyileştirdiğini göstermiştir.

The Effect of Iron Nanoparticles (FeONPs) Produced from Hazelnut Husk and Biochar on Germination of Aged Cowpea Seeds

Objective: In this study, it was aimed to investigate the effects of Fe oxide nanoparticles (FeONPs) obtained by green synthesis method from hazelnut husk and biochar on the germination of aged cowpea seeds with low germination power. Materials and Methods: Hazelnut husk and biochar obtained by slow pyrolysis of hazelnut husk (>400 0C) were decomposed into nanoparticles by green synthesis. FeONPs were biosynthesized and coated with nano hazelnut husk, biochar and organic based FeONPs were produced by measuring particle shape and size by SEM (LEO 1430 VP). This experiment was carried out in a total of 24 petri dishes with 3 replicates at 4 different doses (0, 40, 80 and 160 mg Fe L-1) of FeONPs produced from hazelnut husk and biochar of hazelnut husk. Germination rate, germination time and germination index were calculated. Results: In this study, plant-based FeONPs were synthesized from hazelnut husks and biochar obtained from these husks. The characterization of the obtained FeONPs was revealed by scanning electron microscopy (SEM). Spherical structures with dimensions of 6-100 nm were observed in the produced nanomaterials. According to the results of the germination test, FeONPs containing 40 mg Fe L-1 used as priming agent increased the germination rate of senescent cowpea seeds by 27%, increased the germination index by 33% and decreased the germination time by 13% compared to the control. Conclusion: This study revealed that plant-based FeONPs can be produced from hazelnut husk and biochar, and showed that FeONPs improved the germination power of aged cowpea seeds.

___

  • Abbasi Khalaki, M., Moameri, M., Asgari Lajayer, B., & Astatkie, T. (2021). Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regulation, 93(1), 13-28.
  • Acharya, P., Jayaprakasha, G.K., Crosby, K.M., Jifon, J.L., & Patil, B.S. (2020). Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10(1), 1-16.
  • Akgün, M., Akgün, M., Özcan, M. M., Şenyurt, Ö., & Korkmaz, K. (2017). Effect of Led Light on See Germation of Basil. Ordu University Journal of Science and Tecnology, 10(1), 57-65.
  • Akkurt, B., Günal, H., Erdem, H., & Günal, E. (2020). Piroliz sıcaklığının biyoçarların bazı fiziksel ve kimyasal özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 8(1), 1-13.
  • Alagumuthu, G., & Kirubha, R. (2012). Green synthesis of silver nanoparticles using Cissus quadrangularis plant extract and their antibacterial activity. International Journal of Nanomaterials and Biostructures, 2(3), 30-33.
  • Ceritoğlu, M., Erman, M., Fatih, Ç.I.Ğ., Şahin, S., & Acar, A. (2021). Bitki Gelişimi ve Stres Toleransının Geliştirilmesi Üzerine Sürdürülebilir Bir Strateji: Priming Tekniği. Türkiye Tarımsal Araştırmalar Dergisi, 8(3), 374-389.
  • Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: new tools for sustainable development. Trends in Food Science & Technology, 22(11), 585-594.
  • Dasgupta, N., Ranjan, S. & Ramalingam, C., (2017). Applications of nanotechnology in agriculture and water quality management. Environmental Chemistry Letters, 15(4), 591-605.
  • Dave, P. N., & Chopda, L. V. (2014). Application of iron oxide nanomaterials for the removal of heavy metals. Journal of Nanotechnology, 398569.
  • Demirbilek, M.E. (2015). Tarimda ve gidada nanoteknoloji. Gıda ve Yem Bilimi Teknolojisi Dergisi, 15, 46-53.
  • Demissie, M.G., Sabir, F. K., Edossa, G.D., & Gonfa, B.A. (2020). Synthesis of zinc oxide nanoparticles using leaf extract of lippia adoensis (koseret) and evaluation of its antibacterial activity. Journal of Chemistry, 7459042.
  • Elkoca, E. (2007). Priming: ekim öncesi tohum uygulamaları. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 38(1), 113-120.
  • Erdem, H., A. Kınay, E. Gunal, H. Yaban & Y. Tutus, (2017). The effects of biochar application on cadmium uptake of tobacco. Carpathian Journal of Earth and Environmental Sciences, 12 (2): 447-456.
  • Erdoğan, Ö., Birtekocak, F., Oryaşın, E., Abbak, M., Demirbolat, G. M., Salih, P., & Çevik, Ö. (2019). Enginar yaprağı sulu ekstraktı kullanılarak çinko oksit nanopartiküllerinin yeşil sentezi, karakterizasyonu, anti-bakteriyel ve sitotoksik etkileri. Duzce Medical Journal, 21(1), 19-26.
  • Eren, A. & Baran, M.F. (2019). Fıstık (Pistacia vera L.) yaprağından gümüş nanopartikül (AgNP)’lerin sentezi, karakterizasyonu ve antimikrobiyal aktivitesinin incelenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 6(2), 165-173.
  • Ghafari, H., & Razmjoo, J. (2013). Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. International Journal of Agronomy and plant production, 4(11), 2997-3003.
  • Guha, T., Ravikumar, K.V.G., Mukherjee, A., Mukherjee, A., & Kundu, R. (2018). Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiology and Biochemistry, 127, 403-413.
  • Gur, T., Meydan, I., Seckin, H., Bekmezci, M., & Sen, F. (2022). Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environmental Research, 204, 111897.
  • Hong, J., Wang, C., Wagner, D.C., Gardea-Torresdey, J.L., He, F., & Rico, C.M. (2021). Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environmental Science: Nano, 8(5), 1196-1210.
  • Jain, L.K., Verma, M.P., Ram, N., Choudhary, A., & Parewa, H.P. (2022). Seed Hardening: A Way to Tolerate Against Abiotic Stress in Rainfed Areas. International Journal of Economic Plants, 9(1), 18-21.
  • Jones, N., Ray, B., Ranjit, K.T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS microbiology letters, 279(1), 71-76.
  • Karthik, R., Hou, Y.S., Chen, S.M., Elangovan, A., Ganesan, M., & Muthukrishnan, P. (2016). Eco-friendly synthesis of Ag-NPs using Cerasus serrulata plant extract–Its catalytic, electrochemical reduction of 4-NPh and antibacterial activity. Journal of Industrial and Engineering Chemistry, 37, 330-339.
  • López, A.S., Ramos, M.P., Herrero, R., & Vilariño, J.M.L. (2020). Synthesis of magnetic green nanoparticle–Molecular imprinted polymers with emerging contaminants templates. Journal of Environmental Chemical Engineering, 8(4), 103889.
  • Mahakham, W., Sarmah, A.K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7(1), 1-21.
  • Manjaiah, K.M., Mukhopadhyay, R., Paul, R., Datta, S.C., Kumararaja, P., & Sarkar, B. (2019). Clay minerals and zeolites for environmentally sustainable agriculture. In Modified Clay And Zeolite Nanocomposite Materials (pp. 309-329). Elsevier.
  • Mari, S., Bailly, C., & Thomine, S. (2020). Handing off iron to the next generation: how does it get into seeds and what for?. Biochemical Journal, 477(1), 259-274.
  • Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., Nile, A., Sun, M., Venkidasamy, B., Xiao, J., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 1-31.
  • Panyuta, O., Belava, V., Fomaidi, S., Kalinichenko, O., Volkogon, M., & Taran, N. (2016). The effect of pre-sowing seed treatment with metal nanoparticles on the formation of the defensive reaction of wheat seedlings infected with the eyespot causal agent. Nanoscale Research Letters, 11(1), 1-5.
  • Prabhu, T., Kumar, P.S., Saravanan, K., & Kamaraj, A. (2018). Pre-sowing seed hardening enhancement treatment on seed quality and seed yield in rice ADT 36. International Journal of Plant Sciences (Muzaffarnagar), 13(1), 135-140.
  • Rossi, L., Fedenia, L.N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, 160-166.
  • Sastry, R. K., Rao, N. H., Cahoon, R., & Tucker, K. (2007). Can nanotechnology provide the innovations for a second green revolution in Indian agriculture. In Proceedings of the Nanoscale Science and Engineering Grantees Conference, Arlington, VA.
  • Shaker, B.M., & Fenjan, R.M. (2023). Charactrazation of bio-char produced from sesbania stems (Sesbania Grandiflora). Journal of Engineering and Sustainable Development, 27(2), 204-212.
  • Sher, A., Sarwar, T., Nawaz, A., Ijaz, M., Sattar, A., & Ahmad, S. (2019). Methods of seed priming. In Priming and Pretreatment of Seeds and Seedlings (pp. 1-10). Springer, Singapore.
  • Sher, A., Sarwar, T., Nawaz, A., Ijaz, M., Sattar, A., & Ahmad, S. (2019). Methods of seed priming. Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants, 1-10.
  • Sivritepe, H.Ö. (2012). Tohum gücünün değerlendirilmesi. Alatarım Dergisi, 11(2), 33-44.
  • Tan, Z., Wang, Y., Zhang, L., & Huang, Q. (2017). Study of the mechanism of remediation of Cd-contaminated soil by novel biochars. Environmental Science and Pollution Research, 24(32), 24844-24855.
  • Uyanık, M., Kara, Ș. M., & Korkmaz, K. (2014). Bazı kışlık kolza (Brassica napus L.) çeşitlerinin çimlenme döneminde tuz stresine tepkilerinin belirlenmesi. Tarım Bilimleri Dergisi, 20(4), 368-375.
  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Laui, C., Wei, Z., Huang, C., Xie, X., & Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment, 424, 1-10.
  • Zhu, N., Ji, H., Yu, P., Niu, J., Farooq, M. U., Akram, M. W., Udego, I., Li, H., & Niu, X. (2018). Surface modification of magnetic iron oxide nanoparticles. Nanomaterials, 8(10), 810.