Xenon Test Cihazıyla Işığa Maruz Bırakılan β-Karoten Takviyeli Fındık Yağının Oksidasyon Kararlılığı

Amaç: Lipid oksidasyonunun önlenmesi, yenilebilir katı ve sıvı yağların işlenmesinde gıda sanayi için önemlidir. Yüksek oleik yağlar oksidasyon sırasında yüksek stabilite göstermektedirler. Doğal olarak oleik asit açısından zengin olan fındık yağı, yüksek oksidasyon stabilitesi nedeniyle son zamanlarda gıda endüstrisinde yaygın olarak kullanılmaya başlanmıştır. Yağlara oksidasyona karşı daha dayanıklı olmaları için antioksidan ilavesi yapılmaktadır. β-karoten doğal bir antioksidandır ve fotooksidasyona karşı direncin artmasına neden olur. Bu çalışmanın amacı, doğal bir antioksidan olan β-karoten ilavesinin, ışık maruziyeti altında fındık yağlarının lipid stabilitesi üzerindeki etkisini araştırmaktır. Materyal ve Yöntem: Fındık yağına 25 ppm oranında β-karoten ilave edildi. Katkısız fındık yağı ve beta-karoten ilaveli fındık yağı, bir ksenon test cihazında 275 ve 765 W/m2’lik iki farklı ışık yoğunluğunda 2, 4, 6, 8, 10, 12, 18, 24, 30, 36, 42 ve 48 saat süresince ışığa maruz bırakıldı. Fındık yağı örneklerinden elde edilen yağ asitleri, GC-FID yöntemi kullanılarak yağ asidi metil esterleri (FAME'ler) olarak belirlendi. Fındık yağı örneklerinin oksidasyon derecesini araştırmak için, Ransimat cihazında hızlandırılmış yaşlandırma testi ile indüksiyon süresi, peroksit değeri, SPME-GC-FID kullanılarak uçucu lipit oksidasyon bileşikleri ve DPPH-radikal temizleme testi kullanılarak antioksidatif kapasite ölçüldü. Araştırma Bulguları: Sonuçlar, ışınlama yoğunluğu ve ışınlama süresi ile yağ asidi bileşimindeki değişimin çok güçlü olmadığını gösterdi. Işık maruziyeti sonrası linoleik asit içeriği açısından β-karoten ilaveli ve ilavesiz fındık yağları arasında önemli farklılıklar tespit edildi. Hekzanal, heptenal, E-2,4-heptadienel, nonenal ve nonanyonik asit miktarları fotooksidasyonla artmıştır. Fındık yağı örneklerinin antioksidan kapasitesi ışığa maruz kalma süresince azaldı. Işık maruziyeti sonrasında β-karoten ilaveli fındık yağının, antioksidan katkısız fındık yağına kıyasla daha yüksek bir indüksiyon süresi ve daha düşük peroksit değeri gösterdiği bulundu. Sonuç: Bu sonuçlar, β-karoten katkılı fındık yağının, β-karoten içermeyen fındık yağına göre daha yüksek oksidatif stabilite gösterdiğini doğrulamaktadır. Sonuç olarak, elde edilen bulgular β-karotenin fındık yağının fotooksidasyonunu yavaşlatabileceğini göstermektedir.

Oxidation Stability of Hazelnut Oil Supplemented with β-Carotene During Light Exposure Using Xenon Test Instrument

Objective: The inhibition of lipid oxidation is important for the application of edible fats and oils in food processing. High oleic oils exhibit high stability during oxidation. Hazelnut oil, naturally rich in oleic acid, has recently become widely used in the food industry due to its high oxidation stability. Antioxidants are added to oils to make them more resistant to oxidation. β-carotene is a natural antioxidant and leads to increased resistance to photooxidation. The aim of this work was to investigate the effect of a natural antioxidant β-carotene on light-induced lipid stability of hazelnut oils. Materials and Methods: The hazelnut oil was supplemented with β-carotene in 25 ppm. Not-supplemented hazelnut oil (HO) and the beta-carotene added hazelnut oil (HO with β-car.) were irradiated in a xenon test instrument by different light intensities at 275 and 765 W/m2 for 2, 4, 6, 8, 10, 12, 18, 24, 30, 36, 42 and 48 hours. Fatty acids from the hazelnut oil samples were determined as fatty acid methyl esters (FAMEs) using GC-FID method. To investigate the degree of oxidation of the hazelnut oil samples, the induction time with an accelerated aging test using a Rancimat, peroxide value, volatile lipid oxidation compounds using SPME-GC-FID and antioxidative capacity using DPPH-radical scavenging assay were measured. Results: The results indicated that the change in fatty acid composition with irradiation intensity and duration of irradiation is not so strong. Among the fatty acids, a significant change was detected only in the linoleic acid content between the HO and the HO with β-car. after light exposure. The amounts of hexanal, heptenal, E-2,4-heptadienel, nonenal, and nonanoic acid increased after photooxidation. The antioxidant capacity of the hazelnut oil samples decreased during light exposure. After light exposure, HO with β-car. showed a higher induction time and lower peroxide value compared to HO. Conclusion: These results confirm that the β-carotene supplemented hazelnut oil showed higher oxidative stability than hazelnut oil without additional β-carotene. In conclusion, the results suggest that β-carotene could slow down the photooxidation of hazelnut oil.

___

  • Alasalvar, C., Shahidi, F., Liyanapathirana, C. M., & Ohshima, T. (2003). Turkish Tombul Hazelnut (Corylus avellana L.). 1. Compositional Characteristics. J. Agric. Food Chem., 51(13), 3790-3796.
  • Alasalvar, C., Amaral, J. S., & Shahidi, F. (2006). Functional Lipid Characteristics of Turkish Tombul Hazelnut (Corylus avellana L.). Journal of Agricultural and Food Chemistry, 54, 10177-10183.
  • Alasalvar, C., & Shahidi, F. (2009). Tree Nuts: Composition Phytochemicals and Health Effects. Taylor & Francis Group Boca Raton London New York: CRC Press.
  • Belitz, H.D., Grosch, W., & Schieberle, P. (2008). Lehrbuch der Lebensmittelchemie. 6.Auflage, Springer-Verlag Berlin, Heidelberg.
  • Crews, C., Hough, P., Godward, J., Brereton, P., Lees, M., Guiet, S., & Winkelmann, W. (2005). Study of the Main Constituents of Some Authentic Hazelnut Oils. Journal of Agricultural and Food Chemistry, 53(12), 4843–4852.
  • Codex Standard, (1981). Codex Standard for Edible Fats and Oils. 19.
  • FOODLAB (2007) Foodlab fat v 1.0, Betriebsanleitung, Copyright by Ing. Büro J.Schenne. Hamburg,Germany.
  • Doerffel, K. (1987). Statistik in der Analytischen Chemie, VCH Verlagsgesellschaft, Weinheim.
  • Frankel, E.N. (2005). Lipid Oxidation. 2. Ausgabe, The Oily Press, Bridgwater.
  • Frede, W. (2010). Handbuch für Lebensmittelchemiker, Lebensmittel, Bedarfsgegenstände, Kosmetika, Futtermittel. SpringerVerlag Berlin, Heidelberg.
  • Goulson, M.J., & Warthesen, J.J. (1999). Stability and antioxidant activity of beta carotene in conventional and high oleic canola oil. Journal of Food Science, 64(6), 996-999.
  • Jung, M.Y., & Min, D.B. (1991). Effects of quenching mechanisms of carotenoids on the photosensitized oxidation of soybean oil. Journal of the American Oil Chemists' Society, 68(9), 653-658.
  • Krist, S., Buchbauer, G., & Klausberger, C. (2008). Lexikon der pflanzlichen Fette und Öle. Springer Verlag, Wien. Köksal, A.I., Artik, N., Şimşek, A., & Güneş, N. (2006). Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chemistry, 99(3), 509-515.
  • Petersen, K.D., Kleeberg, K.K., Jahreis, G., Busch‐Stockfisch, M., & Fritsche, J. (2012). Comparison of analytical and sensory lipid oxidation parameters in conventional and high‐oleic rapeseed oil. European Journal of Lipid Science and Technology, 114(10), 1193-1203.
  • Şahin, S. (2011). Bewertung der licht-induzierten Lipidstabilität von konventionellen und high-oleic Rapsölen supplementiert mit natürlichen Antioxidantien, Yüksek Lisans Tezi, Hamburg University of Applied Sciences, Hamburg.
  • Şahin, S., Tonkaz, T., & Yarilgaç, T. (2022). Chemical composition, antioxidant capacity and total phenolic content of hazelnuts grown in different countries. Tekirdağ Ziraat Fakültesi Dergisi, 19(2), 262-270.
  • Şahin, S., & Özata, A.B. (2022). Substitution of cocoa powder with hazelnut skin powder in cocoa hazelnut spreads. Journal of Food Processing and Preservation, 46(12), e17276.
  • Sahin, S., Katharina P., & Jan F. (2011). Effects of quenching mechanisms of carotenoids on the photosensitized oxidation of soybean oil. European Journal of Lipid Science and Technology, 112(S1), doi: 10.1002/ejlt.201100364.
  • Sergio A.R., Paiva M.D., Robert M., & Russell, M.D. (1999). β-Carotene and other carotenoids as antioxidants. Journal of the American College of Nutrition,18(5), 426-433.
  • Ternes W., Täufel A., Tunger L., & Zobel M. (2005). Lebensmitellexion. Behrs-Verlag, Hamburg. Yanishlieva N.V., Raneva V.G. & Marinova, E.M. (2001) β- Carotene in sunflower oil oxidation. Grasas y Aceites, 52(1), 10-16.
  • WHO (2023). https://www.who.int/initiatives/behealthy/ healthy-diet, World Health Organization Healthy Diet.