Vurgulu Elektrik Alan PEF Teknolojisi

Geleneksel ısıl işlem yerine geçebilecek ısıl olmayan yeni teknolojilerin gıda sanayinde kullanımı giderek önem kazanmaktadır. Bu tekniklerin, gıdaların güvenli hale getirilmesinde kalite kayıplarının azaltılması ve daha verimli üretim olanağı sağlaması gibi avantajları vardır. Isıl olmayan işlemler kapsamında ele alınan PEF uygulamaları son yıllarda üzerinde çok fazla çalışılan bir konu olarak karşımıza çıkmaktadır. 1990 yılından itibaren yoğun olarak üzerinde çalışılan PEF’nin gıdalar üzerindeki etkileri ile ilgili çalışmaların sayısı Food Science and Technology Abstracts’a FSTA göre 2000 yılında yaklaşık 150 iken 2009 yılında 5949’a çıkmıştır. Bu derleme kapsamında PEF hakkında temel bilgiler, gıda sanayindeki uygulamaları ve dünyadaki endüstriyel durumu hakkında bilgi verilmektedir

Pulsed Electric Field PEF Technology

Importance in non-thermal food processing is increasing in food industry. This new technology has advantages like reduction in quality losses during food processing and increased efficiency of food processes in comparison to conventional thermal food processing technologies. Studies on the effect of PEF on foods have significantly increased after 1990s, and according to Food Science and Technology Abstracts FSTA , the number of research studies on PEF application in foods increased from 150 in 2000 to 5949 in 2009. In this present study, principles of PEF, its application in food processing and some PEF systems on an industrial scale were reviewed

___

  • [1] Lund, D.B., 2008. Food Engineering for the 21st Century. In J. Welti-Chanes, G.V. Barbosa-Cánovas, J.M. Aguilera (Eds.), Engineering and food for the 21th century (s.1-13). CRC Press, Boca Raton, Florida.
  • [2] Stampfli, R., 1958. Die Strom-SpannungsCharakteristik der erregbaren Membran eines einzelnen Schniirrings und ihre Abhaingigkeit von der Ionenkonzentration. Helv. Physiol. Acta 16: 127-145.
  • [3] Sale A.J.H., Hamilton, W.A., 1967. Effects of high electric fields on microorganisms I. Killing of bacteria and yeasts. Biochim. Biophys. Acta. 148: 781-788.
  • [4] Neumann E., Rosenheck, K., 1972. Permeability changes induced by electric impulses in vesicular membranes, J. Membr. Biol. 10: 279-290.
  • [5] Kinosita, K. Jr., Tsong, T.Y., 1977. Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268: 438-441.
  • [6] Weaver, J.C., Chizmadzhev, Y.A., 1996. Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics 41(2): 135-160.
  • [7] Knorr, D., Guelen, M., Grahl, T., Sitzmann, W., 1994. Food application of high electric field pulses. Trends in Food Science and Technology 5: 71-75.
  • [8] Knorr, D., 1994b. Plant cell and tissue cultures as model systems for monitoring the impact of unit operations on plant food. Trends in Food Science and Technology 5: 328-331.
  • [9] Zimmermann, U., 1986. Electrical breakdown, electropermeabilization and electrofusion. Rev Physiol. Biochem. Pharmacol. 105: 176-256
  • [10] Angersbach, A., Heinz, V., Knorr, D., 2000. Effects of pulsed electric fields on cell membranes in real food systems. Innovative Food Science and Emerging Technology 1: 135-149.
  • [11] Lebovka, N., Praporscic, I., Vorobiev, E., 2004. Combined treatment of apples by pulsed electric fields and by heating at moderate temperature. Journal of Food Engineering 65: 211-217.
  • [12] Angersbach, A., Heinz, V., Knorr, D., 1999. Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnol. Prog. 15: 753-762.
  • [13] Bazhal, M.I., Vorobiev, E.I., 2000. Electrical treatment of apple slices for intensifying juice pressing. Journal of the Science of Food and Agriculture 80: 1668-1674.
  • [14] Bazhal, M.I., Lebovka, N.I., Vorobiev, E.I., 2001. Pulsed electric field treatment of apple tissue during compression for juice extraction. Journal of Food Engineering 50 (3): 129-139.
  • [15] Bajgai, T. R., Hashinaga, F., 2001. High electric field drying of Japanese radish. Drying Technology 19 (9): 2291-2302.
  • [16] Zhang, Q., Chang, F.J., Barbosa-Canovas, G.V., Swanson, B.G., 1994. Inactivation of microorganisms in a semisolid model food using high voltage pulsed electric fields. Lebensm.-Wiss. Technol. 27: 538-543.
  • [17] Sensoy, I., Zhang, Q.H., Sastry, S.K., 1997. Inactivation kinetics of Salmonella Dublin by pulsed electric field. J. Food Process Eng. 20: 367-381.
  • [18] Qin, B., Barbosa-Canovas, G.V., Swanson, B.G., Pedrow, P.D., Olsen, R.G., 1998. Inactivating Microorganisms Using a Pulsed Electric Field Continuous Treatment System. IEEE Transactions on Industry Applications 34(1): 43-50.
  • [19] Barbosa-Canovas, G.V., Gongora-Nieto, M.M., Pothakamury, U.R., Swanson, B.G., 1999. Preservation of foods with pulsed electric fields. Academic Press San Diego, USA.
  • [20] Min, Z.T. Jin, Zhang, Q.H., 2003. Commercial-scale pulsed electric field processing of tomato juice. Journal of Agricultural and Food Chemistry 51: 3338- 3344.
  • [21] Töpfl, S., 2006. Pulsed Electric Fields (PEF) for Permeabilization of Cell Membranes in Food- and Bioprocessing – Applications, Process and Equipment Design and Cost Analysis, Technischen Universität Berlin, Doktora tezi, s. 180.
  • [22] Teissie, J., 1988. Effects of electric fields and currents on living cells and their potential use in biotechnology: a survey. Biochemistry and Bioenergytics 20: 133- 142.
  • [23] Prud Homme, G.J., Glinka, Y., Khan, A.S., Draghia,- Akli, R., 2006. Electroporation enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Current Gene Theraphy 6: 243-273.
  • [24] Benz, R., Zimmermann, U., 1980. Relaxation studies on cell membrane and lipid bilayers in the high electric field range. Bioelectrochem. Bioenerg., 7: 723-739.
  • [25] Benz, R., Conti, F., 1981. Reversible electrical breakdown of squid giant axon membrane. Biochim. Biophys. Acta 645: 115-123.
  • [26] Mir, L.M., Banoun, H., Paoletti, C., 1988. Introduction of definite amount of nonpermeant molecules into living cells after electropermeabilization: direct access to cytoso. Exp. Cell Res. 175: 15-25.
  • [27] Lambert, H. Pankov, R., Gauthier, J., Hancock, R., 1990. Electroporation-mediated uptake of proteins into mammalian cells. Biochem. Cell Biol. 68: 729- 734.
  • [28] Zimmermann, U., Pilwat, G., Riemann, F., 1974. Dielectric breakdown in cell membranes. Biophysical Journal 14: 881-899.
  • [29] Zimmermann, U., 1996. The effect of high intensity electric field pulses on eucaryotic cell membranes: fundamentals and applications. Electromanipulation of cells. U. Zimmermann and G. A. Neil. Boca Raton, CRC Press: 1-106p.
  • [30] Tsong, T.Y., 1990. Review: On electroporation of cell membranes and some related phenomena. Bioelectrochemistry Bioenergetics 24: 271-295.
  • [31] Tsong, T.Y., 1991. Electroporation of cell membranes. Biophysical Journal 60: 297-306.
  • [32] Chang D.C., Reese, T.S., 1990. Changes in membrane structure induced by electroporation as revealed by rapid freezing electron microscopy. Biophysical Journal 58: 1-12.
  • [33] Rols, M.P., 2006. Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim Biophys Acta 1758: 423-428.
  • [34] Abidor, I.G, Li, L.H, Hui, S.W., 1994. Study of cell pellets. I. Electrical properties and porosity. Biophys J. 67: 418-426.
  • [35] Susil, R. Semrov, D., Miklavcic, D., 1998. Electric field-induced transmembrane potential depends on cell density and organization. Electro. Magnetobiol. 17: 391-399
  • [36] Miklavcic, D., Beravs, K., Semrov, D., Cenaar, M., Demsar, F., Sersa, G., 1998. The importance of electric field distribution for effective in vivo electroporation of tissures. Biophysical Journal 74: 2152-2158.
  • [37] Knorr D., Heinz V., Angerbach, A., Lee, D., 2000. Membrane permeabilization and inactivation mechanisms of biological systems by emerging technologies. Proceedings of the eighth international congress on engineering and food (s.15). Puebla, Mexico.
  • [38] Knorr, D., Angersbach, A., 1998. Impact of highintensity electrical field pulses on plant membrane permeabilization. Trends in Food Science and Technology 9: 185-191.
  • [39] Zhang, Q., Barbosa-Cánovas, G.V., Swanson, B.G., 1995. Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering 25: 261- 281.
  • [40] Lebovka, N.I., Bazhal, M.I., Vorobiev, E., 2002. Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering 54(4): 337-346.
  • [41] Van Loey, A., Verachtert, B., Hendrickx, M., 2001. Effects of high electric field pulses on enzymes. Trends in Food Science and Technology 12: 94-102.
  • [42] Doevenspeck, H., 1960. Verfahren und Vorrichtung zur Gewinnung der einzelnen Phasen aus dispersen Systemen.German Patent, DE 1237541
  • [43] Flaumenbaum, B.L., 1968. Anwendung der Elektroplasmolyse bei der Herstellung von Fruchtsäften. Flüssiges Obst. 35: 19-22.
  • [44] Fincan, M., DeVito, F., Dejmek, P., 2004. Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment. Journal of Food Engineering 64: 381-388.
  • [45] Bouzrara, H., 2001. Enhancing pressing of vegetable products by pulsed electric fields: case of sugar beet. PhD thesis, Université de Technologie de Compiègne, France.
  • [46] Eshtiaghi, M.N., Knorr, D., 2000. Anwendung elektrischer Hochspannungsimpulse zum Zellaufschluss beider Saftgewinnung am Beispiel von Weintrauben. LVT 45: 23-27.
  • [47] Lebovka, N.I., Praporscic, I., Ghnimi, S., Vorobiev, E., 2005. Does electroporation occur during ohmic heating of food. Journal of Food Science 70(5): 308- 311.
  • [48] Kraus, W., 2003. The 2002 beet campaign - VDZ Zweigverein Süd. Zuckerindustrie 128(5): 344-354.
  • [49] Toefl, S., 2010. Food Processing by pulsed electric fields-Equipment design and commerical experience, International Pulsed Power PhD Congress Karlsruhe, Almanya, 16p.