Süt Endüstrisinde Kullanılan Isı Değiştiricilerde Kalıntı Oluşumu

Isı değiştiricilerde biriken süt kalıntısı, sütte uygulanan ısıl işlemin etkinliğinin azalmasına neden olmakta ve fazladanısı direnci oluşumuna bağlı olarak sistemde ısı iletim kayıplarına yol açmaktadır. Ayrıca ısı değiştiricilerde oluşankalıntı tabakası, ısı iletim yüzeylerinde halk sağlığını tehdit eden mikroorganizmalar için besi ortamı olarak görevyapmaktadır. Süt endüstrisinde ısıl işlem sırasında kalıntı oluşumu, ekonomik kayıplara neden olan ve uzun yıllardırçözümü üzerinde çalışılan bir sorun olmuştur. Isı değiştiricilerde süt kalıntısı sorununun çözümüne yönelikçalışmalarda, kalıntı oluşum ve temizleme mekanizmalarının anlaşılması ve kalıntı oluşumuna etkisi olanparametrelerin belirlenmesi üzerine odaklanılmıştır. Bu derlemede sütün bileşiminin, kullanılan ısı değiştiricinin yüzeyözelliklerinin ve uygulanan ısıl işlem parametrelerinin süte uygulanan ısıl işlem sırasında kalıntı oluşumuna etkisi veoluşan kalıntının tespit edilmesinde ve temizlenmesinde kullanılan yöntemler hakkında bilgi verilmesiamaçlanmaktadır.

Fouling In Heat Exchangers Used In Dairy Industry

Milk fouling in heat exchangers results in a loss of heat transfer in the system due to additional heat resistance, and leads to a reduction in the effectiveness of heat treatment applied to milk. Furthermore, the presence of fouling layers in heat exchangers serves as broth for microorganisms in heat transfer surface, which may threat public health. Fouling during heat treatment has been a problem to be solved for many years, which causes economic losses in dairy industry. Studies to overcome this problem in heat exchangers have focused on understanding the formation and cleaning mechanisms of fouling and determining parameters that affect the formation of fouling. The aim of this review is to give information on the effects of milk composition, surface properties of utilized heat exchanger and applied parameters in heat treatment on the formation of milk fouling during heat treatment, and methods used for the detection and cleaning of milk fouling.

___

  • [1] Urgu, M., Saatli, T.E., Türk, A., Koca, N. (2017). Isıl işlem görmüş içme sütlerinde (pastörize, UHT ve laktozsuz UHT süt) hidroksimetilfurfural içeriğinin belirlenmesi. Akademik Gıda, 15(3), 249-255.
  • [2] Agarwal, P., Sikand, A., Shanthi, V. (2014). Application of heat exchangers in bioprocess industry: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 24- 28.
  • [3] Earle, R.L., Earle, M.D. (2004). Unit Operations in Food Processing, Web Edition 6: Heat transfer applications. http://www.nzifst.org.nz/unitoperations. Erişim tarihi: 16.04.2018.
  • [4] Grijspeerdt, K., Mortier, L., De Block, J., Van Renterghem, R. (2004). Applications of modelling to optimise ultra high temperature milk heat exchangers with respect to fouling. Food Control, 15(2), 117-130.
  • [5] Visser, H., Jeurnink, T.J.M., Delplace, F., Fryer, P., Schrami, J.E. (1997). Fouling and cleaning of heat treatment equipment. Bulletin of the international Dairy Federation, 328, 7-31.
  • [6] Bansal, B., Chen, X.D. (2006). A critical review of milk fouling in heat exchangers. Comprehensive Reviews in Food Science and Food Safety, 5(2), 27-33.
  • [7] Sadeghinezhad, E., Kazi, S.N., Badarudin, A., Zubair, M.N.M., Dehkordi, B.L., Oon, C.S. (2013). A review of milk fouling on heat exchanger surfaces. Reviews in Chemical Engineering, 29(3), 169-188.
  • [8] De Jong, P. (1997). Impact and control of fouling in milk processing. Trends in Food Science and Technology, 8(12), 401-405.
  • [9] Bansal, B., Chen, X.D. (2009). Fouling of heat exchangers by dairy fuids: A review. The Berkeley Electronic Press RP2, 23, 149-57.
  • [10] Delsing, B.M.A., Hiddink, J. (1983). Fouling of heat transfer surfaces by dairy liquids. Netherlands Milk and Dairy Journal, 37, 139-148.
  • [11] Sadeghinezhad, E., Kazi, S.N., Dahari, M., Safaei, M.R., Sadri, R., Badarudin, A. (2015). A comprehensive review of milk fouling on heated surfaces. Critical Reviews in Food Science and Nutrition, 55(12), 1724-1743.
  • [12] Traybal, R.E. (1981). Mass transfer operation. McGraw - Hill Book Company, Singapore.
  • [13] Jeurnink, T.J., Walstra, P., De Kruif, C.G. (1996). Mechanisms of fouling in dairy processing. Netherlands Milk Dairy Journal, 50, 407- 426.
  • [14] Burton, H. (1968). Deposits from whole milk in heat treatment plant: A review and discussion. Journal of Dairy Research, 35(2), 317-330.
  • [15] Paterson, W.R., Fryer, P.J. (1988). A reaction engineering approach to the analysis of fouling. Chemical Engineering Science, 43(7), 1714-1717.
  • [16] Jeurnink, T.J.M. (1996). Milk fouling in heat exchangers. Ph.D. Thesis, Wageningen Agricultural University, 144p, Netherlands.
  • [17] Visser, J., Jeurnink, T.J.M. (1997). Fouling of heat exchangers in the dairy industry. Experimental Thermal and Fluid Science, 14(4), 407-424.
  • [18] Fryer, P.J. (1989). The uses of fouling models in the design of food process plant. Journal of the Society of Dairy Technology, 42(1), 23-29.
  • [19] Belmarbeiny, M.T., Gotham, S.M., Paterson, W.R., Fryer, P.J. (1993). The effect of Reynolds number and fluid temperature in whey protein fouling. Journal of Food Engineering, 19(2), 119-139.
  • [20] Fryer, P.J., Robbins, P.T., Green, C., Schreier, P.J.R., Pritchard, A.M., Hasting, A.P.M. (1996). A statistical model for fouling of a plate heat exchanger by whey protein solution at UHT conditions. Food and Bioproducts Processing: Transactions of the Institution of Chemical Engineers Part C, 74(4), 189-199.
  • [21] Davies, T.J., Henstridge, S.C., Gillham, C.R., Wilson, D.I. (1997). Investigation of whey protein deposit properties using heat flux sensors. Food and Bioproducts Processing: Transactions of the Institution of Chemical Engineers Part C, 75(2), 106-110.
  • [22] Gillham, C.R., Fryer, P.J., Hasting, A.P.M., Wilson, D.I. (1999). Cleaning-in-place of whey protein fouling deposits: Mechanisms controlling cleaning. Food and Bioproducts Processing, 77(2), 127-136.
  • [23] Xin, H., Chen, X.D., Özkan, N. (2002). Whey protein-based gel as a model material for studying initial cleaning mechanisms of milk fouling. Journal of Food Science, 67(7), 2702-2711.
  • [24] Fickak, A., Al-Raisi, A., Chen, X.D. (2011). Effect of whey protein concentration on the fouling and cleaning of a heat transfer surface. Journal of Food Engineering, 104(3), 323-331.
  • [25] Tuan, T.H. (2001). Fouling of stainless steel surfaces by heated whole milk. Ph.D. Thesis, Massey University, Palmerston North, 212p, New Zealand.
  • [26] Bennett, H.A.E. (2007). Aspects of fouling in dairy processing. Ph.D. Thesis, Massey University, Palmerston North, 172p, New Zealand.
  • [27] Walstra, P., Jennes, R., Badings, H.T. (1994). Dairy Chemistry and Physics. Wiley, New York. [28] Burton, H. (1961). A laboratory method for the investigation of milk deposits on heat exchange surfaces. Journal of Dairy Research, 28(3), 255- 263.
  • [29] Burton, B.Y.H. (1965). A method for studying the factors in milk which influence the deposition of milk solids on a heated surface. Journal of Dairy Research, 32, 65-78.
  • [30] Gordon, K.P., Hankinson, D.J., Carver, C.E. (1968). Deposition of milk solids on heated surfaces. Journal of Dairy Science, 51(4), 520-526.
  • [31] Walstra, P., Geurts, T.J., Noomen, A., Jellema, A., Boekel, M.A.J.S. (2005). Dairy technology: Principles of milk properties and processes. CRC Press, Boca Raton, Florida, USA.
  • [32] Corredig, M., Dalgleish, D., (1996). Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk. Food Research International, 29(1), 49-55.
  • [33] Skudder, P.J., Brooker, B.E., Bonsey, A.D., Alvarez-Guerrero, N.R. (1986). Effect of pH on the formation of deposit from milk on heated surfaces during ultra high temperature processing. Journal of Dairy Research, 53, 75-87.
  • [34] Kumar, C.G., Anand, S. (1998). Significance of microbial biofilms in food industry: A review. International Journal of Food Microbiology, 42(1), 9-27.
  • [35] Yoo, J.A., Hardin, M.T., Chen, X.D. (2006). The influence of milk composition on the growth of Bacillus stearothermophilus. Journal of Food Engineering, 77(1), 96-102.
  • [36] Mozes, N., Marchal, F., Hermesse, M.P., Van Haecht, J.L., Reuliaux, L., Leonard, A.J. (1987). Immobilization of microorganisms by adhesion: Interplay of electrostatic and nonelectrostatic interactions. Biotechnology and Bioengineering, 30(3), 439-450.
  • [37] Swartzel, K.R. (1983). Tubular heat exchanger fouling by milk during ultra high temperature processing. Journal of Food Science, 48(5), 1507- 1511.
  • [38] Rakes, P.A., Swartzel, K.R., Jones, V.A. (1986). Deposition of dairy protein-containing fluids on heat exchange surfaces. Biotechnology Progress, 2(4), 210-217.
  • [39] Jindal, S., Anand, S., Huang, K., Goddard, J., Metzger, L., Amamcharla, J. (2016). Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers. Journal of Dairy Science, 99(12), 9502-9513.
  • [40] Yoon, J., Lund, D.B. (1994). Magnetic treatment of milk and surface treatment of plate heat exchangers: Effects on milk fouling. Journal of Food Science, 59(5), 964-980.
  • [41] Britten, B.Y.M., Green, M.L., Boulet, M. (1988). Deposit formation on heated surfaces - effect of interface energetics. Journal of Dairy Research, 55, 551-562.
  • [42] Prakash, S., Datta, N., Deeth, H.C. (2005). Methods of detecting fouling caused by heating of milk. Food Reviews International, 21(3), 267-293.
  • [43] Withers, P. (1996). Ultrasonic, acoustic and optical techniques for the non invasive detection of fouling in food processing equipment. Trends in Food Science and Technology, 7, 293-298.
  • [44] Riverol, C., Napolitano, V. (2005). Estimation of fouling in a plate heat exchanger through the application on neural networks. Journal of Chemical Technology and Biotechnology, 80(5), 594-600.
  • [45] Müller-Steinhagen, H., Malayeri, M.R., Watkinson, A.P. (2011). Heat exchanger fouling: Mitigation and cleaning strategies. Heat Transfer Engineering, 32(3–4), 189-196.
  • [46] Malayeri, M.R., Watkinson, A.P., Conferences, E., Irsee, K., Rosmaninho, R., Rizzo, G. (2013). Anti-] fouling stainless steel based surfaces for milk heating processes. The Berkeley Electronic Press Rp2, (16), 97-102.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi
Sayıdaki Diğer Makaleler

Stevia rebaudiana Bitkisinin Tatlandırıcı, Antioksidan ve Antimikrobiyal Özellikleri

Şeyda KARAGÖZ, Aslıhan DEMİRDÖVEN

Besin Etiketi Okuma Alışkanlıklarına ve Etiket Okumanın Satın Alma Tercihlerine Cinsiyetin Etkisi: Tekirdağ İli Örneği

Fatma COŞKUN, Serap KAYIŞOĞLU

Hanehalkı Gıda Tüketim Talebi ve Tüketici Davranışlarının Analizi: Isparta İli Örneği

Ali Rıza YAZICI, Vecdi DEMİRCAN

Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu

Gülten TİRYAKİ GÜNDÜZ, Ayça KORKMAZ

Bebek Beslenmesi İçin Zenginleştirilmiş Formülasyonla Hazırlanan Uşak Tarhanası Hamurunun Fermantasyonunda Mikrobiyolojik ve Kimyasal Değişimler

Ömer ŞİMŞEK, Duygu ZEHİR

Bazı Et Türlerinde Polisiklik Aromatik Hidrokarbon Oluşumuna Farklı Pişirme Yöntemlerinin Etkisi

Ömer Şerif AYDIN, Yasemin ŞAHAN

Farklı Yağ İçeriklerine Sahip İnek ve Manda Sütünün Kefir Danesi ve Starter Kültürle Kefir İçeceği Üretiminde Kullanılması: Depolama Süresince Protein ve Tirozin İçerikleri

Oktay TOMAR, Gökhan AKARCA

Peyniraltı Suyunun Fraksiyonlarına Ayrılmasında Bütünleşik Membran İşlemlerinin Uygulanabilirliği

İrem ÖZDEMİR, Esra ALTIOK, Dilek SELVİ GÖKKAYA, Nalan KABAY, Mithat YÜKSEL, Semih ÖTLEŞ

Baklagillerin Bileşimi

Gül SARIOĞLU, Y. Sedat VELİOĞLU

Karpuzun (Citrullus lanatus) Şeker, Organik Asit ve Uçucu Aroma Bileşimi Üzerine Aşılı Fide Kullanımı ve Hasat Zamanının Etkileri

Muharrem GÖLÜKÇÜ, Haluk TOKGÖZ