Salça Üretim Atıklarından Ultrason Destekli Ekstraksiyon İşlemiyle Likopen Ekstraksiyonu

Bu çalışmada, salça üretimi sırasında oluşan domates atıklarından likopen ekstraksiyonu, geleneksel çözgen ekstraksiyonu ve ultrason destekli ekstraksiyon yöntemi ile yapılmış; likopen konsantrasyonu spektrofotometrik yöntem kullanılarak belirlenmiştir. Çözgen olarak %0.05 w/v butillenmiş hidroksitoluen BHT içeren hegzan:aseton:etanol hacmen 2:1:1 karışımı kullanılmıştır. Geleneksel ekstraksiyon ve ultrason destekli ekstraksiyon işlemlerinde 35:1 v/w çözgen katı oranı kullanılmıştır. Geleneksel çözgen yöntemiyle likopen ekstraksiyon işlemi 20, 40 ve 60°C olmak üzere 3 farklı sıcaklıkta, 10, 20, 30 ve 40 dakika süreyle yapılırken, ultrason destekli işlem 50, 65 ve 90 W ultrason güçlerinde 1, 2, 5, 10, 15, 20 ve 30 dakika süreyle yapılmıştır. Sıcaklığın, işlem süresinin ve ultrason gücünün ekstraksiyon işlemi üzerine olan etkisi incelenmiştir. Geleneksel ekstraksiyonda en verimli uygulama 60°C’de 30 dakika olmakta iken, ultrasonik ekstraksiyonla yüksek verimlere daha kısa sürede çıkılabilmektedir. Ultrasonik uygulamayla en yüksek verim 90W güç ile 30 dakikada olduğu tespit edilmiştir. Sonuçlar, likopen ekstraksiyonunda ultrason uygulamasının hem süre hem de sıcaklık açısından geleneksel uygulamaya kıyasla daha avantajlı olduğunu göstermektedir

Ultrasound Assisted Extraction of Lycopene from Tomato Paste Processing Wastes

In this study, lycopene extraction from the wastes of tomato paste processing line by either conventional solvent extraction or ultrasound assisted extraction was studied. Lycopene content of the extracts were determined spectrofotometrically. BHT 0.05% w/v added hexane:acetone:ethanol 2:1:1, v/v/v mixture was used as a solvent. 35:1 solvent-solid ratio v/w was used in both conventional and ultrasound assisted extraction. Conventional solvent extraction trials performed at 3 different temperatures 20, 40 and 60°C for 10, 20, 30 and 40 minutes whereas in ultrasound assisted extractions 3 ultrasonic powers 50, 65 and 90 W for 1, 2, 5, 10, 15, 20 and 30 minutes were used. Effects of temperature, process cycle and ultrasonic power on lycopene extraction were determined. The most efficient extraction for conventional method was at 60°C for 30 minutes whereas at 90 W ultrasonic power for 30 minutes for ultrasound assisted extraction. High extractability values were obtained by ultrasound application during lycopene extraction. In conclusion, ultrasonic extraction of lycopene requires less time and lower temperature than conventional extraction

___

  • Sharma, S. K., Le Maguer, M. 1996. Lycopene in tomatoes and tomato pulp fractions. Italian Journal of Food Science 8(2): 107-113.
  • Chandler, L.A., Schwartz, S.J., 1987. HPLC separation of cis-trans carotene isomers in fresh and processed fruits and vegetables. Journal of Food Science 52(3): 669-672.
  • Heinonen, M.I., Ollilainen, V., Linkola, E. K., Varo, P.T., Koivistoinen, P. E., 1989. Carotenoids in Finnish foods, vegetables, fruits, and berries. Journal of Agricultural and Food Chemistry 37(3): 655-659.
  • Sadler, G., Davis, J., Dezman, D., 1990. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. Journal of Food Science 55(5): 1460-1461.
  • Wang, J., Sun B., Cao, Y., Tian, Y., Li, X., 2008. Optimization of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry 106(2): 804-810.
  • Mason, T.J., Lorimer J.P., 2002. Applied Sonochemistry, Wiley-VCH, Coventry,UK.
  • Mulet, A., Carcel, J.A., Benedito, J., Simal, S., Rossello, C., 2003. Ultrasonic mass transfer enhancement in food processing. In Transport Phenomena in Food Processing, Edited by Jorge Welti-Chanes and Jorge F, CRC Press,Florida, US, Bölüm 18/2.
  • Liang, H., 1993. Modelling of ultrasound assisted and osmotically induced diffusion in plant tissue. PhD Dissertation, Purdue University, Indiana, US.
  • Pinillos, S.C., Fernandez, T.C., Briongos, M.G., Pascual, L.P., Barrio, C.S., 2006. Ultrasound- assisted extraction of volatile compounds from wine samples: Optimisation of the method. Talanta 69(5): 1123-1129.
  • Borisov, Y.Y., Gynkina, N.M., 1973. Acoustic Drying, In Physical Principles of Ultrasonic Technology, Edited by Rosenger L.D, New York, US, Plenum Press, 2, 381-474.
  • Vilkhu, K., Mawson, R., Simons, L., Bates, D., 2008. ultrasound assisted extraction in the food industry- A review. Innovative Food Science and Emerging Technologies 9(2): 161-169. opportunities for Pauling, L., 1943. Spectral
  • Sun, Y., Ma, G.,Ye, X., Kakuda, Y., Meng, R., 2010. Stability of all-trans-β-carotene under ultrasound treatment in a model system: Effects of different factors, kinetics and newly formed compounds. Ultrasonics Sonochemistry 17(4): 654-661.
  • Soria, A.C., Villamiel, M., 2010. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science and Technology 21(7): 323-331.
  • Riesz, P., Kondo, T., 1992. Free radical formation induced by ultrasound and its biological implications. Free Radical Biology and Medicine 13(3): 247-270.
  • Chen, J., Shi, J., Xue, S. J., Ma, Y., 2009. Comparison of lycopene stability in water and oil based food model systems under thermal and light-irradiation treatments. LWT-Food Science and Technology 42(3): 740-747.
  • Adekunte, A.O., Tiwari, B.K., Cullen, P.J., Scannel, A.G., O’Donnell, C.P., 2010. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry 122(3): 500-507.
  • Ma, Y., Ye, X., Hao, Y., Xu, G., Xu, G., Liu, D., 2008. Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrasonics Sonochemistry 15(3): 227-232.
  • Lianfu, Z., Zelong, L., 2008. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry 15(5): 731-737.