Karides Unlu Atıştırmalık Üretiminde 3D Gıda Yazıcısı Kullanımı: Yazdırma Parametreleri ve Formülasyonun Optimizasyonu

Üç boyutlu (3D) yazıcıların son yıllarda gıda sektöründe kullanımı gittikçe yaygınlaşmaktadır. 3D gıda yazıcıları gıda ürünlerinin verimli kullanımını sağlamakta, karmaşık şekillerde, farklı tekstürel özellikte ve istenen içerikte ürünlerin geliştirilmesine imkân vermektedir. Bu çalışmanın amacı 3D gıda yazıcı ile karides unu katkılı tahıl bazlı üç boyutlu sağlıklı atıştırmalık üretimi ile karides tüketiminin arttırılmasına katkı sağlanmasıdır. Ürünlerin yazdırılması için ilk olarak karides unu olmaksızın gıda yazıcısında yazdırılabilir en uygun özellikteki (referans) hamur içeriği belirlenmiştir. Daha sonra 3D gıda yazıcısında, hedeflenen şekilde 3D olarak yazdırılabilen ve yazdırma sonrası yapısını koruyabilen ürünlerin elde edilmesi amacıyla hamur yapısına etki eden parametreler Plackett-Burman deneysel tasarımı kullanılarak optimize edilmiştir. Bunun için karides unu, buğday unu/mısır unu oranı, su sıcaklığı, yağ miktarı, ürün yüksekliği ve şekil doluluk oranı bağımsız değişken parametreler olarak belirlenmiştir. Analizler sonucunda, karides unu oranı ve su sıcaklığının hamurun sertliği, kıvam ve iç yapışkanlık değeri üzerindeki etkisinin önemli olduğu, viskozite indeksi üzerine ise sadece karides unu oranının etkisinin önemli olduğu tespit edilmiştir (p<0.05). 3D yapı analizleri sonucunda dış çap hata oranına söz konusu değişkenlerin etkisinin önemsiz olduğu, iç çap hata oranına ise buğday unu/mısır unu oranı, eklenen suyun sıcaklığı ve şekil doluluk oranının etkisinin önemli olduğu belirlenmiştir (p<0.05). Karides unu miktarı, buğday unu/mısır unu oranı, su sıcaklığı ve şekil doluluk oranının, ürünlerin toplam hata oranına etkisi önemli bulunmuştur (p<0.05).

Production of Snacks with Shrimp Flour by 3D Food Printers: Optimization of Printing Parameters and Formulation

The use of three-dimensional (3D) printers in the food industry is widespread in recent years. 3D food printers improve products with complex shapes, different textural properties, and desired compositions apart from providing efficient utilization of foods. This study aimed to contribute to an increase in shrimp consumption with the production of 3D healthy snacks with cereal-based shrimp flour with a 3D food printer. Firstly, the most printable (reference) dough composition was determined, which could be printed by a food printer without the addition of shrimp flour. Then, significant factors affecting dough structure were optimized using the Plackett-Burman experimental design to obtain products that could be 3D-printed in a targeted design and self-supporting ability after printing. Shrimp flour, corn flour/wheat flour ratio, water temperature, butter amount, product height, and infill rate were determined as independent variables. It was determined that the effect of shrimp flour ratio and water temperature on the firmness, consistency, and cohesiveness of the dough was statistically significant while the effect of shrimp flour ratio on the viscosity index was significant (p<0.05). Results of the 3D structure analysis showed that the effect of these variables on the outer diameter error rate was insignificant, while the effect of the wheat flour/corn flour ratio, the water temperature, and the infill level were significant on the inner diameter error rate (p<0.05). The influence of the amount of shrimp flour, wheat flour/corn flour ratio, water temperature, and infill level on the total error rates of the products were significant (p<0.05).

___

  • [1] Sofi, F., Dinu, M.R. (2016). Nutrition and prevention of chronic-degenerative diseases. Agriculture and Agricultural Science Procedia, 8, 713-717.
  • [2] Kris-Etherton, P.M., Harris, W.S., Appel, L.J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circularion, 106, 2747-2757.
  • [3] Türkiye İstatistik Kurumu (TUİK). (2021). Su Ürünleri İstatistikleri. Tarım ve Orman Bakanlığı, Balıkçılık ve Su Ürünleri Genel Müdürlüğü. https://biruni.tuik.gov.tr/medas/?kn=97&locale=tr, Erişim tarihi: 24.08.2022.
  • [4] T.C. Tarım Orman Bakanlığı. (2021). Tarım Ürünleri Piyasaları, Su Ürünleri. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Ürün%20Raporları/2021%20Ürün%20Raporları/Su%20Ürünleri%20Ürün%20Raporu%202021-338%20TEPGE.pdf. Erişim tarihi: 24.08.2022.
  • [5] Ertop, M.H., Kutluk, K., Coşkun, K., Canlı, S. (2016). Gıda endüstrisi yan ürünleri kullanımıyla cips üretimine yeni bir yaklaşım: Zenginleştirilmiş gluten cipsi. Akademik Gıda, 14(4), 398-406.
  • [6] Potter, R., Stojceska, V., Plunkett, A. (2013). The use of fruit powders in extruded snacks suitable for children’s diets. LWT-Food Science and Technology, 51, 537-544.
  • [7] Rathod, R.P., Annapure, U.S. (2016). Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT-Food Science and Technology, 66, 114-123.
  • [8] Anton, A.A. Fulcher, R.G., Arntfield, S.D. (2009). Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgarus L.) flour: Effect of bean addition and extrusion cooking. Food Chemistry, 113,989-996.
  • [9] Sumargo, F., Gulati, P., Weier, S.A., Clarke, J., Rose, D.J. (2016). Effects of processing moisture on the physical properties and in vitro digestibility of starch and protein in extruded Brown rice and pinto bean composite flours. Food Chemistry, 211, 726-733.
  • [10] Karaton Kuzgun, N. (2017). Luciobarbus esocinus, (Heckel 1843)’den elde edilen balık cipslerinin besin kompozisyonu ve duyusal özelliklerinin belirlenmesi. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 13(2), 153-162.
  • [11] Mohamed, G.F., Sulieman, A.M., Soliman, N.G. (2014). Fortification of biscuits with fish protein concentrate. World Journal of Dairy and Food Sciences, 9(2), 242-249.
  • [12] Abraha, B., Mahmud, A., Admassu, H., Habte-Tsion, H.M., Xia, W., Yang, F. (2018). Production of biscuit from Chinese sturgeon fish fillet powder (Acipeneser sinensis): A snack food for children. Journal of Aquatic Food Production Technology, 27(10), 1048-1062.
  • [13] Azzollini, D., Derossi, A., Fogliano, V., Lakemond, C.M.M., Severini, C. (2018). Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-enriched snacks. Innovative Food Science and Emerging Technologies, 45, 344-353.
  • [14] Suknark, K., McMatters, K.H., Phillips, R.D. (1998). Acceptance by American and Asian consumers of extruded fish and peanut snack products. Journal of Food Science, 63(4), 721-725.
  • [15] Kong, J., Dougherty, M.P., Perkins, L.B., Camire, M.E. (2008). Composition and consumer acceptability of a novel extrusion-cooked salmon snack. Journal of Food Science, 73(3), 118-123.
  • [16] Lucas, B.F., De Morais, M.G., Santos, T.D. (2018). Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. LWT-Food Science and Technology, 90,270-276.
  • [17] Kumar, R., Martin Xavier, K.A., Lekshmi, M., Balange, A. (2018). Fortification of extruded snacks with chitosan: Effects on techno functional and sensory quality. Carbonhydrate Polymers, 194, 267-273.
  • [18] Shaviklo, R.A., Azaribeh, M., Moradi, Y., Zangeneh, P. (2015). Formula optimisation and storage stability of extruded puffed corn-shrimp snacks. LWT-Food Science and Technology, 63, 307-314.
  • [19] Erkan, N., Özden, Ö., Üçok Alakavuk, D, Tosun, Ş.Y., Varlık, C., Baygar, T. (2007). İstanbul’da satılan karideslerin sodyum metabisülfit düzeyinin tespiti, Journal of Fisheries Sciences, 1(1), 26-33.
  • [20] Yerlikaya, P., Topuz, O.K., Buyukbenli, H.A., Gokoglu, N. (2013). Fatty acid profiles of different shrimp species: Effects of depth of catching. Journal of Aquatic Food Product Technology, 22:290-297.
  • [21] Sun, J., Peng, Z., Zhou, W., Fuh, J.Y.H., Hong, G.S., Chiu, A. (2015). A review on 3D Printing for Customized Food Fabrication. Procedia Manufacturing, 1,308-319.
  • [22] Godoi, F.C., Prakash, S., Bhandari, B.R. (2016). 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44-54.
  • [23] Liu, Z., Bhandari, B., Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology, 69, 83-94.
  • [24] Cohen, D.L., Lipton, J.I., Cutler, M., Coulter, D., Vesco, A., Lipson, H. (2009). Hydrocolloid Printing: A Novel Platform for Customized Food Production. Solid Freeform Fabrication Symposium, September 18, 2009, Austin, Texas, USA, Book of Proceedings.
  • [25] Dick, A., Bhandari, B., Dong, X., Sangeeta, P. (2020). Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocolloids, 107, 105940.
  • [26] Guo, C., Zhang, M., Devahastin, S. (2021). Color/aroma changes of 3D-printed buckwheat dough with yellow flesh peach as triggered by microwave heating of gelatin-gum Arabic complex coacervates. Food Hydrocolloids, 112, 106358.
  • [27] Jagadiswaran, B., Alagarasan, V., Anandharamakrishnan, C. (2021). Valorization of food industry waste and by-products using 3D printing: A study on the development of value-added functional cookies. Future Foods.
  • [28] Phuhongsung, P., Zhang, M., Devahastin, S. (2020). Influence of surface pH on color, texture and flavor of 3D printed composite mixture of soy protein isolate, pumpkin, and beetroot. Food and Bioprocess Technology, 13(9), 1600-1610.
  • [29] Keerthana, K., Anukiruthika, T., Moses, J.A., Anandharam-akrishnan, C. (2020). Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering, 287, 110116.
  • [30] Uribe-Wandurraga, Z.N., Zhang, L., Noort, M.W.J., Schutyser, M.A.I., García-Segovia, P., Martínez-Monzó, J. (2020). Printability and physicochemical properties of microalgae-enriched 3D-Printed snacks. Food and Bioprocess Technology, 13(11), 2029-2042.
  • [31] Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering, 220, 20-27.
  • [32] Severini, C., Azzollini, D., Albenzio, M., Derossi, A. (2018). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International, 106, 666-676.
  • [33] Ahuja, S.K., Ferreira, G.M., Moreira, A.R. (2004). Application of Plackett-Burman Design and Response Surface Methodology to Achieve Exponential Growth for Aggregated Shipworm Bacterium. Biotechnology and Bioengineering, 85(6), 666-675.
  • [34] Li,X., Xu, H., Liu, F., Peng, Q., Chen, F., Guo, Y. (2021). Utilizing Plackett-Burman design and response surface analysis to optimize ultrasonic cleaning of pesticide residues from rape. Journal of the Science of Food and Agriculture, 102, 2061-2069.
  • [35] Pacularu-Burada, B., Turturica, M., Rorcha, J.M., Bahrim, G.E. (2021). Statistical approach to potentially enhance the postbiotication of gluten-free sourdough. Applied Sciences, 11(11), 2-25.
  • [36] Valmorida, J.S., Castillo-Israel, K.A.T. (2018). Application of Plackett-Burman experimentals design in the development of muffin using adlay flour. IOP Conf. Series: Earth and Environmental Science, 102, 012081.
  • [37] Singh, R.K.R., Majumdar, R.K., Venkateshwarlu, G. (2014). Optimum extrusion conditions for improving physical properties of fish cereal-based snacks by response surface methodology. Journal of Food Science and Technology, 51(9), 1827-1836.
  • [38] Majumdar, R.K., Singh, R.K.R. (2014). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of fish-based expanded snacks. Journal of Food Processing and Preservation, 38, 864-879.
  • [39] Vanaja, K., Rani, R.H.S. (2007). Design of experiments: Concept and applications of Plackett-Burman design. Clinical Research and Regulatory Affairs, 24(1), 1-23.
  • [40] Khan, M.A., Sastry, S.V., Vaithiyalingam, S.R., Agarwal, V., Nazzal, S., Reddy, I.K. (2000). Captopril gastrointestinal therapeutic system coated with cellulose acetate pseudolatex: evaluation of main effects of several formulation variables. International Journal of Pharmaceutics, 193, 147-156.
  • [41] Zhang, L., Lou, Y., Schutyser, M.A.I. 2018. 3D printing of cereal-based food structures containing probiotics. Food Structure, 18, 14-22.
  • [42] Liu, Y., Liang, X., Saeed, A., L. W., Quin, W. (2019). Properties of 3D printed dough and optimization of printing parameters. Innovative Food Science and Emerging Technologies, 54, 9-18.
  • [43] Association of Official Analytical Chemists (AOAC). (1990). Official methods of analysis of the Association of Official Analytical Chemists, 17th edition. Washington, DC.
  • [44] Vukušić Pavičić, T., Grgić, T., Ivanov, M., Novotni, D., & Herceg, Z. (2021). Influence of flour and fat type on dough rheology and technological characteristics of 3D-printed cookies. Foods, 10(1), 193.
  • [45] Shi, Y., Zhang, M., Bhandari, B. (2021). Effect of addition of beeswax based oleogel on 3D printing of potato starch-protein system. Food Structure, 27, 100176.
  • [46] Yang, F., Zhang, M., Prakash, S., Liu, Y. (2018). Physical properties of 3D printed baking dough as affected by different compositions. Innovative Food Science and Emerging Technologies, 49, 202-210.
  • [47] Jeyakumari, A., Das, M.S.R., Bindu, J., Joshy, C.G., Zynudheen, A.A. (2016). Optimisation and comparative study on the addition of shrimp protein hydrolysate and shrimp powder on physochemical properties of extruded snack. International Journal of Food Science and Technology, 51, 1578-1585.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi