Gıdalarda Deniz Kaynaklı Makroalg Özütü Kullanımı ve Lipit Oksidasyonunu Önlemede Antioksidan Etkisi

Katkı maddesi içermeyen doğal ürünlere yönelik artan tüketici talepleri ve yeni üretim teknikleri doğal katkımaddelerine olan ilgiyi arttırmıştır. Antioksidanlar, az miktarlarda kullanımıyla bile yağ oksidasyonunu engelleyen yada geciktiren gıda katkı maddelerinin önemli bir grubudur. Gıdalarda, butil hidroksianisol, butil hidroksitoluen vetersiyer bütil hidroksikinon gibi sentetik antioksidanlar ya da tokoferoller, askorbik asit, karotenoidler, flavonoidler,aminoasitler, fosfolipidler ve steroller gibi doğal antioksidanlar kullanılmaktadır. Son zamanlarda, gıda endüstrisi doğalantioksidan maddelerin ekstraksiyonu ve saflaştırılması üzerine odaklanmıştır. Bu nedenle, antioksidan bileşenlerin iyibir kaynağı olarak makroalg özütlerine olan ilginin arttığı görülmektedir. Literatürde, deniz kökenli makroalg özütlerinin(özellikle kahverengi makroalglerin) güçlü antioksidan özelliklere sahip olduğu rapor edilmektedir. Pek çokaraştırmada, farklı makroalg türlerinden, klorofil, β-karoten, α-tokoferol, askorbik asit, niasin, tiamin, polifenol,polisakkaritler, flavonoidler, fosfolipidler, terponoidler ve peptidler gibi antioksidan bileşenler ekstrakte edilmiştir.Araştırmacılar tarafından, makroalg özütlerinin antioksidan özellikleri üzerine farklı coğrafik bölge, makroalg türleri,çözücüler, ekstraksiyon metodu, ekstraksiyon sıcaklığı ve zamanı gibi bazı parametrelerin etkileri araştırılmıştır. Buderlemenin amacı, makroalg özütlerinin antioksidan aktivitesi üzerine yapılan bilimsel makalelerin sonuçlarını sunmakve gıdalarda antioksidan maddelerin doğal bir kaynağı olarak potansiyeli hakkında bilgi vermektir.

Use of Marine Macroalgae Extracts in Foods and Their Antioxidative Effect against Lipid Oxidation

Increased consumer demand for natural foods that are free from additives and new production techniques resulted in growing interest for natural additives. Antioxidants are a significant group of food ingredients inhibiting or delaying lipid oxidation even at minute concentrations. Synthetic antioxidants such as butylhydroxyanisole, butylated hydroxytoluene, and tert-butyl-hydroquinone or natural antioxidants like tocopherols, ascorbic acid, carotenoids, flavonoids, amino acids, phospholipids and sterols are used in foods. Recently, the food industry has focused on the extraction and purification of natural antioxidative substances. For this reason, an interest towards marine macroalgae extracts as a good source of antioxidant constituents has been increasing. In the literature, marine macroalgae extracts (especially brown macroalgae) were reported to have strong antioxidant properties. In several studies, antioxidant compounds such as chorophyll, β-carotene, α-tocopherol, ascorbic acid, niacin, thiamine, polyphenols, polysaccharides, flavonoids, phospholipids, terpenoids and peptids were extracted from different macroalgae species. The effect of parameters such as different geographic regions, macroalgae species, solvents, extraction methods, extraction temperature and time on the antioxidative properties of macroalgae extracts were determined by several researchers. The aim of this review is to present the results of scientific studies on the antioxidant activity of macroalgae extract and to inform about their potential as a natural source of antioxidant substances in foods.

___

  • [1] Song, H., Zhang, Q., Zhang, Z., Wang, J. (2010). İn vitro antioxidant activity of polysaccharides extracted from Bryopsis plumosa. Carbohydrate Polymers 80(4), 1057-1061.
  • [2] O’sullivan, A.M., O’callaghan, Y.C., O’grady, M.N., Queguineur, B., Hanniffy, D., Troy, D.J., Kerry, J.P., O’brien, N.M. (2011). In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chemistry, 126(3), 1064-1070.
  • [3] Samaraweera, A.M., Vidanarachchi, J.K., Kurukulasuriya, M.S. (2012). Industrial Applications of Macroalgae. In: Handbook of Marine Macroalgae. Biotechnology and Applied Phycology, Edited by Kim, S.K., Wiley-Blackwell Publishing Ltd., pp. 500-521, Oxford, United Kingdom.
  • [4] Ganesan, P., Kumar, C.S., Bhaskar, N. (2008). Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresource Technology, 99(8), 2717- 2723.
  • [5] Ngo, D.H., Wijesekara, I., Vo, T.S., Ta, Q.V., Kim, S.K. (2011). Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Research International, 44(2), 523-529.
  • [6] Venugopal, V. (2009). Marine products for healthcare. Functional and bioactive nutraceutical compounds from the ocean. CRS press, Taylor and Francis group, pp. 527, Boca Raton, FL.
  • [7] Pokorny, J. (1991). Natural antioxidants for food use. Trends in Food Science and Technology, 2, 223-227.
  • [8] Kitts, D.D. (1996). Toxicity and safety of fats and oil. In: Baileys Industrial Oil and Fat Products, Edited by Hui, Y.H., 5 th Edition, Vol. 1, WileyInterscience, p. 215-280, New York, USA.
  • [9] Wijesekara, I., Pangestuti, R., Kim, S.K. ( 2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84(1), 14-21.
  • [10] Yuan, Y.V., Bone, D.E., Carrington, M.F. (2005). Antioxidant activity of dulse (Palmaria palmata) evaluated in vitro.FoodChemistry, 91(3), 485-494.
  • [11] Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F., 2016. Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Akademik Gıda,14(4), 418-423.
  • [12] Bergman, M., Perelman, A., Dubinsky, Z., Grossman, S. (2003). Scavenging of reactive oxygen species by a novel glucurinated flavonoid antioxidant isolated and purified from spinach. Phytochemistry, 62(5), 753-762.
  • [13] Sabeena Farvin, K.H., Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2-3), 1670-1681.
  • [14] O’sullivan, A.M., O’callaghan, Y.C., O’grady, M.N., Hayes, M., Kerry, J.P., O’brien, N.M. (2013). The effect of solvents on the antioxidant activity in CaCO-2 cellsof Irish brown seaweed extracts prepared using accelerated solvent extraction (ASE). Journal of Functional Foods, 5(2), 940-948.
  • [15] Cox, S., Turley, G.H., Rajauria, G., Abu-Ghannam, N., Jaiswal, A.K. (2014). Antioxidant potential and antimicrobial efficacy of seaweed (Himanthalia elongata) extract in model food systems. Journal of Applied Phycology, 26(4), 1823-1831.
  • [16] Balboa, E.M., Conde, E., Moure, A., Falque, E., Dominguez, H. (2013). In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry, 138(2-3), 1764-1785.
  • [17] Duan, X.J., Zhang, W.W., Li, X.M., Wang, B.G., (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95(1), 37- 43.
  • [18] Dinh, T.V., Saravana, P.S., Woo, H.C., Chun, B.S., (2018). Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Separation and Purification Technology, 196, 287-299.
  • [19] Jimenez-Escrig, A., Jimenez-Jimenez, I., Pulido, R., Saura-Calixto, F. (2001). Antioxidant activity of fresh and processed edible seaweeds. Journal of Science of Food and Agriculture, 81, 530-534.
  • [20] Ye, H., Wang, K., Zhou, C., Liu, J., Zeng, X. (2008). Purification, anti- tumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chemistry, 111, 428-432.
  • [21] Wang, B.G., Zhang, W.W., Duan, X.J., Li, X.M., 2009a. İn vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae). Food Chemistry, 113(4), 1101-1105.
  • [22] Zubia, M., Payri, C., Deslandes, E. ( 2008). Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). Journal of Applied Phycology, 20(6), 1033-1043.
  • [23] Yuan, Y.V., Westcott, N.D., Hu, C., Kitts, D.D. (2009). Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chemistry, 112(2), 321-328.
  • [24] Nakai, M., Kageyama, N., Nakahara, K., Miki, W., (2006). Phlorotannins as radical scavengers from the extract of Sargassum ringgoldianum. Marine Biotechnology, 8(4), 409-414.
  • [25] Wang, T., Olafsdottir, G., Jonsdottir, R., Kristinsson, H.G., Johannsson, R. (2011). Functional and nutraceutical ingredients from marine macroalgae. In: Handbook of Seafood Quality, Safety and Health Applications, Edited by Alasalvar, C., Miyashita, K., Shahidi, F. and Wanasundara, U., Wiley-Blackwell Publishing Ltd., pp. 508-521, Oxford, UK.
  • [26] Lim, S.N., Cheung, P.C.K., Ooi, V.E.C.,Ang, P.O. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. Journal of Agricultural and Food Chemistry, 50(13),3862-3866.
  • [27] Huang, H.L., Wang, B.G. (2004). Antioxidant capacity and lipophilic content of seaweed collected from the Qingdao coastline, Journal of Agricultural and Food Chemistry, 52(16), 4993- 4997.
  • [28] Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S., Shimeno, H. (2003). Oversulfation of fucoidan enhances its anti-angiogenic and anti-tumor activities. Biochemical Pharmacology, 65(2), 173- 179.
  • [29] Yan, X., Chuda, Y., Suzuki, M., Nagata, T. (1999). Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Bioscience, Biotechnology and Biochemistry, 63(3), 605-607.
  • [30] Ruperez, P., Ahrazem, O., Leal, J.A. (2002). Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 50(4), 840-845.
  • [31] Senevirathne, M., Kim, S.H., Siriwardhana, N., Ha, J.H., Lee, K.W., Jeon, Y.J. (2006). Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition. Food Science and Technology International, 12, 27-38.
  • [32] Keyrouz, R., Abasq, M.L., Le Bourvellec, C., Blanc, N., Audibert, L., Argall, E., Hauchard, D. (2011). Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany. Food Chemistry, 126(3), 831-836.
  • [33] Kumar, K.S., Ganesan, K., Rao, P.V.S. (2008). Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty - an edible seaweed. Food Chemistry, 107(1), 289-295.
  • [34] Zaragoza, M.C., Lopez, D., Saiz, M.P., Poquet, M., Perez, J., Puig-Parellada, P., Marmol, F., Simonetti, P., Gardana, C., Lerat, Y., Burtin, P., Inisan, C., Rousseau, I., Besnard, M., Mitjavila, M.T. (2008). Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. Journal of Agricultural and Food Chemistry, 56(17), 7773-7780.
  • [35] Devi, K.P., Suganthy, N., Kesika, P., Pandian, S.K. (2008). Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine, 8, 38.
  • [36] Ren, B., Chen, C., Li, C., Fu, X., You, L., Liu, R.H. (2017). Optimization of microwaveassisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydrate Polymers, 173, 192-201.
  • [37] Palanisamy, S., Vinosha, M., Marudhupandi, T., Rajasekar, P., Prabhu, N.M. (2017). Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. International Journal of Biological Macromolecules, 102, 405-412.
  • [38] Costa, L.S., Fidelis, G.P., Cordeiro, S.L., Oliveira, R.M., Sabry, D.A., Camara, R.B.G., Nobre, L.T.D.B., Costa, M.S.S.P., Almeida-Lima, J., Farias, E.H.C., Leite, E.L., Rocha H.A.O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine and Pharmacotherapy, 64(1), 21-28.
  • [39] Zhang, Z., Wang, F., Wang, X., Liu, X., Hou, Y., Zhang, Q. (2010). Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydrate Polymers, 82(1), 118-121.
  • [40] Khalafu, S.H.S., Aida, W.M.W., Lim, S.J. Maskat, M.Y. (2017). Effects of deodorisation methods on volatile compounds, chemical properties and antioxidant activities of fucoidan isolated from brown seaweed (Sargassum sp.). Algal Research, 25, 507-515.
  • [41] Souza, M.C.R.D., Marques, C.T., Dore, C.M.G., Silva, F.R.F.D., Rocha, H.A.O., Leite, E.L. (2007). Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology, 19(2), 153-160.
  • [42] Ayyad, S.E.N., Ezmirly, S.T., Basaif, S.A., Alarif, W.M., Badria, A. F., Badria, F.A. (2011). Antioxidant, cytotoxic, antitumor, and protective DNA damage metabolites from the red sea brown alga Sargassum sp. Pharmacognosy Research, 3, 160-165.
  • [43] Ragubeer, N., Limson, J.L., Beukes, D.R. (2012). Electrochemistry-guided isolation of antioxidant metabolites from Sargassum elegans. Food Chemistry, 131, 286-290.
  • [44] Cahyana, A.H., Shuto, Y. And Kınoshıta, Y. (1992). Pyropheophytin a as an antioxidative substance from the marine algae, arame (Eisenia bicyclis). Bioscience Biotechnology and Biochemistry, 56(10), 1533-1535.
  • [45] Nakamura, T., Nagayama, K., Uchida, K., Tanaka, R. (1996). Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fisheries Science, 62, 923-926.
  • [46] Yan, X.J., Li, X.C., Zhou, C.X., Fan, X. (1996). Preservation of fish oil rancidity by phlorotannins from Sargassum kjellmanianum. Journal of Applied Phycology, 8, 201-203.
  • [47] Ahn, G.N., Kım, K.N., Cha, S.H., Song, C.B., Lee, J., Heo, M.S., Yeo, I.K., Lee, N.H., Jee, Y.H., Kım, J.S., Heu, M.S., Jeon, Y.J. (2007). Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. European Food Research Technology, 226, 71-79.
  • [48] Shibata, T., Ishimaru, K., Kawaguchi, S., Yoshikawa, H., Hama, Y., 2008. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. Journal of Applied Phycology, 20(5), 705-711.
  • [49] Li, Y., Qian, Z.J., Ryu, B., Lee, S.H., Kim, M.M., Kim, S.K., 2009. Chemical components and its antioxidant properties in vitro: An edible marine brown alga, Ecklonia cava. Bioorganic and Medicinal Chemistry, 17, 1963-1973.
  • [50] De La Coba, F., Aguılera, J., Fıgueroa, F.L. De Galvez, M.V., Herrera, E. (2009). Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. Journal of Applied Phycology, 21, 161-169.
  • [51] Yoshiki, M., Tsuge, K., Tsuruta, Y., Yoshimura, T., Koganemaru, K., Sumi, T., Matsui, T., Matsumoto, K. (2009). Production of new antioxidant compounds from mycosporine-like amino acid, porphyra-334 by heat treatment. Food Chemistry, 113, 1127–1132.
  • [52] Arulkumar, A., Rosemary, T., Paramasivam, S., Rajendran, R.B. (2018). Phytochemical composition, in vitro antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatalysis and Agricultural Biotechnology, 15, 63-71.
  • [53] Huang, D., Ou, B., Prior, R.L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856.
  • [54] Diaz-Rubio, M.E., Perez-Jimenez, J. Saura-Calixto, F. (2009). Dietary fiber and antioxidant capacity in Fucus vesiculosus products. International Journal of Food Sciences and Nutrition, 60, 23-34.
  • [55] Cofrades, S., Lopez-Lopez, I., Bravo, L., RuizCapillas, C., Bastıda, S., Larrea, M.T., JimenezColmenero, F. (2010). Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds. Food Science and Technology International, 16, 361-370.
  • [56] Sachindra, N.M., Airanthi, M.K.W.A., Hosokawa, M., Miyashita, K. (2010). Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds. Journal of Food Science Technology, 47(1), 94-99.
  • [57] Demirel, Z., Yılmaz-Koz, F.F., Karabay-Yavaşoğlu, U.N., Özdemir, G., Sukatar, A., 2009. Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of Serbian Chemical Society, 74(6), 619-628.
  • [58] Boonchum, W., Peerapornpısal, Y., Kanjanapothı, D., Pekkoh, J., Pumas, C., Jamjaı, U., Amornlerdpıson, D., Noıraksar, T., Vacharapıyasophon, P. (2011). Antioxidant activity of some seaweed from the Gulf of Thailand. International Journal of Agriculture and Biology, 13, 95-99.
  • [59] Cotelle, N., Bernier, J.L., Catteau, J.P., Pommery, J., Wallet, J.C., Gaydou, E.M. (1996). Antioxidant properties of hydroxy-flavones. Free Radical Biology and Medicine, 20(1), 35-43.
  • [60] Ganesan, K., Suresh Kumar, K., Subba Rao, P.V. (2011). Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innovative Food Science and Emerging Technologies, 12(1), 73-78.
  • [61] Kang, K., Park, Y., Hwang, H.J., Kim, S.H., Lee, J.G., Shin, H.C., 2003. Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors. Archives of Pharmacal Research 26(4): 286-293.
  • [62] Kuda, T., Kunii, T., Goto, H., Suzuki, T., Yano, T. (2007). Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto Peninsula, Japan. Food Chemistry, 103(3), 900-905.
  • [63] Kuda, T., Tsunekawa, M., Goto, H., Araki, Y. (2005a). Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. Journal of Food Composition and Analysis, 18(7), 625-633.
  • [64] Zahra, R., Mehrnaz, M., Farzaneh, V., Kohzad, S. (2007). Antioxidant activity of extract from a brown alga, Sargassum boveanum. African Journal of Biotechnology, 6, 2740-2745.
  • [65] Zubia, M., Fabre, M.S., Kerjean, V., Lann, K.L., Stiger-Pouvreau, V., Fauchon, M., Deslandes, E. (2009). Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chemistry, 116(3), 693-701.
  • [66] Cho, M.L., Lee, H.S., Kang, I.J., Won, M.H., You, S.G., 2011. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chemistry 127(3): 999-1006.
  • [67] Prior, R.L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B., Jacob, R. (2003). Assay for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. Journal of Agricultural and Food Chemistry, 51(11), 3273- 3279.
  • [68] Kindleysides, S., Quek, S.Y., Miller, M.R. (2012). Inhibition of fish oil oxidation and the radical scavenging activity of New Zealand seaweed extracts. Food Chemistry, 133, 1624-1631.
  • [69] Price, J.A., Sanny, C.G., Shevlin, D. (2006). Application of manual assessment of oxygen radical absorbent capacity (ORAC) for use in high throughput assay of ‘‘total’’ antioxidant activity of drugs and natural products. Journal of Pharmacological and Toxicological Methods, 54(1), 56-61.
  • [70] Wang, T., Jonsdottir, R., Olafsdottir, G. (2009b). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240-248.
  • [71] Plaza, M., Amigo-Benavent, M., Del Castillo, M.D., Ibanez, E., Herrero, M. (2010). Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Research International, 43(10), 2341-2348.
  • [72] Yangthong, M., Hutadilok-Towatana, N., Phromkunthong, W. (2009). Antioxidant activities of four edible seaweeds from the Southern coast of Thailand. Plant Foods for Human Nutrition, 64, 218-223.
  • [73] Lin, H., Tsai, W., Chiu, T. (2012). Antioxidant properties of seven cultivated and natural edible seaweed extracts from Taiwan. Journal of Aquatic Food Product Technology, 21(3), 248-264.
  • [74] Moon, J-K., Shibamoto, T. (2009). Antioxidant assays for plant and food components. Journal of Agricultural and Food Chemistry, 57(5), 1655-1666.
  • [75] Heo, S.J., Park, E.J., Lee, K.W., Jeon, Y.J. (2005). Antioxidant activities of enzymatic extracts from brown seaweed. Bioresource Technology, 96(14), 1613-1623.
  • [76] Yuan, H., Song, J. (2005). Preparation, structural characterization and in vitro anti-tumor activity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum. Journal of Applied Phycology, 17(1), 7-13.
  • [77] Athukorala, Y., Lee, K.W., Song, C., Ahn, C.B., Shın, T.S., Cha, Y.J., Shahıdı, F., Jeon, Y.J., (2003a). Potential antioxidant activity of marine red algae Grateloupia filicina extracts, Journal of Food Lipids, 10(3), 251-265.
  • [78] Athukorala, Y., Lee, K.W., Shahıdı, F., Heu, M.S., Kım, H.T., Lee, J.S., Jeon, Y.J. (2003b). Antioxidant efficacy of extracts of an edible red alga (Grateloupia filicina) in linoleic acid and fish oil. Journal of Food Lipids, 10(4), 313-327.
  • [79] Kuda, T., Tsunekawa, M., Hishi, T., Araki, Y. (2005b). Antioxidant properties of dried kayamonori, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chemistry, 89(4), 617-622.
  • [80] El-Baky, H.H.A., El-Baz, F.K., El-Baroty, G.S. (2009). Natural preservative ingredient from marine alga Ulva lactuca L. International Journal of Food Science and Technology, 44(9), 1688-1695.
  • [81] Santoso, J., Yoshie-Stark, Y., Suzuki, T. (2004). Anti-oxidant activity of methanol extracts from Indonesian seaweeds in an oil emulsion model. Fisheries Science, 70(1), 183-188.
  • [82] Moroney, N.C., O’grady, M.N., O’doherty, J.V., Kerry, J.P. (2013). Effect of a brown seaweed (Laminaria digitata) extract containing laminarin and fucoidan on the quality and shelf-life of fresh and cooked minced pork patties. Meat Science, 94(3), 304-311.
  • [83] Wang, H., Chiu, L.C.M., Ooi, V.E.C., Ang Jr, P.O. (2010). A potent antitumor polysaccharide from the edible brown seaweed Hydroclathrus clathratus. Botanica Marina, 53(3), 265-274.
  • [84] Sabeena Farvin, K.H., Jacobsen, C. (2012). New natural antioxidants for protecting omega‐3 rich products. Lipid Technology, 24(3), 59-62.
  • [85] Honold, J.P., Jacobsen, C., Jonsdottir, R., Kristinsson, H.G., Hermund, D.B. (2016). Potential seaweed-based food ingredients to inhibit lipid oxidation in fish-oil-enriched mayonnaise. European Food Research and Technology, 242, 571−584.
  • [86] Halldorsdottir, S.M., Sveinsdottir, H., Gudmundsdottir, A., Thorkelsson, G., Kristinsson, H.G. (2014). High quality fish protein hydrolysates prepared from by-product material with Fucus vesiculosus extract. Journal of Functional Foods, 9, 10-17.
  • [87] Sabeena Farvin, K.H., Jacobsen, C. (2015). Antioxidant activity of seaweed extracts: ın vitro assays, evaluation in 5% fish oil-in-water emulsions and characterization. Journal of the American Oil Chemists' Society, 92, 571-587.
  • [88] Hermund, D., Iltas, B., Honold, P., Jónsdóttir, R., Kristinsson, H., Jacobsen, C. (2015). Characterisation and antioxidant evaluation of Icelandic F. vesiculosus extracts in vitro and in fishoil-enriched milk and mayonnaise. Journal of Functional Foods, 19, 828-841.
  • [89] Jónsdóttir, R., Geirsdóttir, M., Hamaguchi, P.Y., Jamnik, P., Kristinsson, H.G., Undeland, I. (2016). The ability of in vitro antioxidant assays to predict the efficiency of a cod protein hydrolysate and brown seaweed extract to prevent oxidation in marine food model systems. Journal of Science of Food and Agriculture, 96(6), 2125-2135.
  • [90] Babakhani, A., Farvin, K.H.S., Jacobsen, C. (2016). Antioxidative effect of seaweed extracts in chilled storage of minced atlantic mackerel (Scomber scombrus): effect on lipid and protein oxidation. Food Bioprocess and Technology, 9, 352-364.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi