Domateste Bulunan Enzimlerin Önemi ve Isıl/Isıl Olmayan Teknolojilerle İnaktivasyonu

Domateste (Solanum lycopersicum) bulunan ve teknolojik anlamda en önemli enzimler pektin metilesteraz (PME), poligalakturonaz (PG) ve lipoksigenaz (LOX)'dır. Bunlardan PME ısıya en dirençli pektolitik enzim olduğundan ısı uygulaması ile gerçekleştirilen inaktivasyon çalışmalarında indikatör enzim olarak kabul edilmektedir. Pektik enzimler (PME ve PG) domates ve ürünlerinin sertliği, viskozitesi, renk stabilitesi, berraklığı ve son ürün verimi üzerinde belirgin bir etkiye sahiptir. LOX aktivitesi ise esansiyel yağ asitlerini yıkıma uğratarak domates ve ürünlerinde istenmeyen lezzete neden olmaktadır. Bu derlemede, domateste bulunan enzimlerin yapısı ve bu enzimlerin domates ürünlerinin kalitesi üzerine etkileri konusunda bilgi verilmiş ayrıca domates işlemede ısıl ve ısıl olmayan işlemlerin bu enzimler üzerine etkilerinin belirlendiği çalışmalar derlenmiştir.

Importance of Tomato Enzymes and Inactivation by Thermal/Non Thermal Processing

Pectin methylesterase (PME), polygalacturonase (PG) and lipoxygenase (LOX) are the most important enzymes in tomatoes (Solanum lycopersicum) and in tomato processing. PME is generally chosen as an indicator enzyme for thermal processing due to its highest thermal stability. Pectolytic enzymes have great impact on texture, viscosity, color stability, clarity and efficiency of the product. LOX activity catalyses the essential fatty acids oxidation which causes off-flavor compounds in tomato and tomato products. Hence, enzyme properties in tomatoes and effects of enzymes on quality of tomato products will be summarized, in addition effect of thermal and non thermal processing on enzyme inactivation will be overviewed.

___

  • [1] Shook, C.M., Shellhammer, T.H., Schwartz, S.J., 2001. Polygalacturonase, pectinesterase, and lipoxygenase activities in high pressure-processed diced tomatoes. Journal of Agricultural and Food Chemistry 49: 664-668.
  • [2] Yener, F., 2007. Pektinaz enziminin farklı iki destek üzerine immobilizasyonu ve karakterizasyonu. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans Tezi, Adana, Türkiye, 47s.
  • [3] Celestino, S.M.C., Freitas, S.M., Medrano, F.J., Sousa, M.V., Filho, E.X.F., 2006. Purification and characterization of a novel pectinase from Acrophialophora nainiana with emphasis on its physicochemical properties. Journal of Biotechnology 123(1): 33-42.
  • [4] Pedrolli, D.B., Monteiro, A.C., Gomes, E., Carmona, E.C., 2009. Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. The Open Biotechnology Journal 3: 9-18.
  • [5] Acar, J., Gökmen, V., 2005. Meyve ve Sebze İşleme Teknolojisi. Hacettepe Üniversitesi Ankara, Türkiye.
  • [6] Özler, A., 2009. Malatya kayısısından (Prunus armeniaca L.) pektinesteraz enziminin saflaştırılması ve karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye, 74s.
  • [7] Giner, J., Gimeno, V., Espachs, A., Elez, P., Barbosa Canovas, G.V., Martin, O., 2000. Inhibition of tomato (Licopersicon esculentum Mill.) pectin methylesterase by pulsed electric fields. Innovative Food Science and Emerging Technologies 1: 57- 67.
  • [8] Yıldız, H., Baysal, T., 2006. Effects of alternative current heating treatment on Aspergillus niger, pectin methylesterase and pectin content in tomato. Journal of Food Engineering 75: 327-332.
  • [9] Yemenicioğlu, A., Cemeroğlu, B., 2003. Sıcaklık ve sürenin havuç ve yeşil fasulyelerde bulunan pektin metilesteraz enzimi üzerindeki etkisinin belirlenmesi. Gıda 28(5): 491-495.
  • [10] Laats, M.M., Grosdenis, F., Recourt, K., Voragen, A.G.J., Wichers, H.J., 1997. Partial purification and characterization of pectin methylesterase from green beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry 45: 572-577.
  • [11] Hudson, J.M., Buescher, R.W., 1986. Relationship between degree of pectin methylation and tissue firmness of cucumber pickles. Journal of Food Science 51: 138-140.
  • [12] Chun, J.P., Huber, D.J., 1998. Polygalacturonasemediated solubilization and depolymerization of pectic polymers in tomato fruit cell walls. Plant Physiology 117: 1293-1299.
  • [13] DellaPenna, D., Lashbrook, C., Toenjes, K., Giovannoni, J.J., Fischer, R.L., Bennett, A.B., 1990. Polygalacturonase isozymes and pectin depolymerization in transgenic rin tomato fruit. Plant Physiology 94: 1882-1886.
  • [14] Smith, C.J.S., Watson, C.F., Morris, P.C., Bird, C.R., Seymour, G.B., Gray, J.E., Arnold, C., Tucker, G.A., Schuch, W., Harding, S., Grierson, D., 1990. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Molecular Biology 14: 369-379.
  • [15] Giovannoni, J.J., DellaPenna, D., Bennett, A.B., Fischer, R.L., 1989. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1: 53- 63. [16] Seymour, G.B., Lasslett, Y., Tucker, G.A., 1987. Differential effects of pectolytic enzymes on tomato polyuronides in vivo and in vitro. Phytochemistry 26: 3137-3139.
  • [17] Huber, D.J., 1983. The role of cell wall hydrolases in fruit softening. Horticultural Reviews 5: 169-219.
  • [18] Yemenicioğlu, A., Cemeroğlu, B., 2004. Kornişon (Cucumis satimus) pektin metilesteraz enziminin bazı nitelikleri. Gıda 29(1): 51-55.
  • [19] Alonso, J., Rodriguez, T., Canet, W., 1995. Effect of calcium pretreatments on the texture of frozen cherries, role of pectinesterase in the changes in the pectic materials. Journal of Agricultural and Food Chemistry 43: 1011-1016.
  • [20] Anthon, G.E., Sekine, Y., Watanabe, N., Barrett, D.M., 2002. Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. Journal of Agricultural and Food Chemistry 50: 6153-6159.
  • [21] Hayes, W.A., Smith, P.G., Morris, A.E.J., 1998. The production and quality of tomato concentrates. Critcal Reviews in Food Science and Nutrition 38: 537-564.
  • [22] Thakur, B.R., Singh, R.K., Nelson, P.E., 1996. Quality attributes of processed tomato products: a review. Food Reviews International 12: 375-401.
  • [23] Cemeroğlu, B.S., 2011. Meyve ve Sebze İşleme Teknolojisi Cilt I. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., Ankara, Türkiye.
  • [24] Anthon, G.E., Barrett, D.M., 2010. Changes in pectin methylesterification and accumulation of methanol during production of diced tomatoes. Journal of Food Engineering 97: 367-372.
  • [25] Pressey, R., Avants, J., 1982. Solubilization of cell walls by tomato polygalacturonase: effects of pectinesterases. Journal of Food Biochemistry 6: 57-74.
  • [26] Chuong, H.H., Şimşek, S., Reuhs, B.L., 2009. Analysis of cell-wall pectin from hot and cold break tomato preparations. Food Research International 42: 770-772.
  • [27] Stadtman, F.H., Buhlert, J.E., Marsh, G.L., 1977. Titratable acidity of tomato juice as affected by break procedure. Journal of Food Science 42: 379- 382.
  • [28] Anthon, G.E., Barrett, D.M., 2012. Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chemistry 132: 915-920.
  • [29] Gaffe, J., Tieman, D.M., Handa, A.K., 1994. Pectin methylesterase isoforms in tomato (Lycopersicon esculentum) tissues. Effects of expression of a pectinmethylesterase antisense gene. Plant Physiology 105: 199-203.
  • [30] Warrilow, A.G.S., Turner, R.J., Jones, M.G., 1994. A novel form of pectinesterase in tomato. Phytochemistry 35: 863-868.
  • [31] Lee, M., Macmillan, J.D., 1968. Mode of action of pectin enzymes. I. Purification and certain properties of tomato pectinesterase. Biochemistry 7: 4005-4010.
  • [32] Stolle-Smits, T., Beekhuizen, J.G., Recourt, K., Voragen, A.G.J., Van Dijk, C., 2000. Preheating effects on the textural strength of canned green beans. 1. Cell wall chemistry. Journal of Agricultural and Food Chemistry 48: 5269-5277.
  • [33] Stanley, D.W., Bourne, M.C., Stone, A.P., Wismer, W.V., 1995. Low temperature blanching effects on chemistry, firmness and structure of canned green beans and carrots. Journal of Food Science 60: 327-333.
  • [34] Greve, L.C., McArdle, R.N., Gohlke, J.R., Labavitch, J.M., 1994. Impact of heating on carrot firmness. Changes in cell wall components. Journal of Agricultural and Food Chemistry 42: 2900-2906.
  • [35] Van Buren, J.P.S., 1979. The chemistry of texture in fruits and vegetables. Journal of Texture Studies 10: 1-23.
  • [36] Bartolome, L.G., Hoff, J.E., 1972. Firming of potatoes: biochemical effects of preheating. Journal of Agricultural and Food Chemistry 20: 266-270. [37] Grassin, C., 2002. Firm up your fruit. Fruit Processing 12: 208-211.
  • [38] Castaldo, D., Servillo, L., Laratta, B., Fasanaro, G., Villari, G., De Giorgi, A., Giovane, A., 1995. Preparation of high-consistency vegetable products: tomato pulps (part II). Industrial Conserve 70: 253- 258.
  • [39] Castaldo, D., Villari, G., Laratta, B., Impembo, M., Giovane, A., Fasanaro, G., Servillo, L., 1996.
  • Preparation of high-consistency diced tomatoes by immersion in calcifying solutions: a pilot plant study. Journal of Agricultural and Food Chemistry 44: 2600-2607.
  • [40] Tandon, K.S., Baldwin, E.A., Shelwfelt, R.L., 2001. Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum Mill) as affected by the medium of evaluation. Postharvest Biology and Technology 2: 261-268.
  • [41] Buttery, R.G., Teranishi, R., Ling, L.C., 1987. Fresh tomato volatiles: a quantitative study. Journal of Agricultural and Food Chemistry 35: 540-544.
  • [42] Hatanaka, A., 1993. The biogenesis of green odour by green leaves. Phytochemistry 34: 1201-1218.
  • [43] Galliard, T., Matthew, J.A., Wright, A.J., Fishwick, M.J., 1977. The enzymatic breakdown of lipids to volatile and non-volatile carbonyl fragments in disrupted tomato fruits. Journal of the Science of Food and Agriculture 28: 863-868.
  • [44] Anthon, G.E., Barrett, D.M., 2003. Thermal inactivation of lipoxygenase and hydroperoxytrienoic acid lyase in tomatoes. Food Chemistry 81: 275-279.
  • [45] Min, S., Min, S.K., Zhang, Q.H., 2003. Inactivation Kinetics of Tomato Juice Lipoxygenase by Pulsed Electric Fields. Journal of Food Science 68(6): 1995-2001.
  • [46] Von Elbe, J.H., Schwartz, S.J., 1996. Colorants. In: Food Chemistry, Edited by OR. Fennema, Marcel Dekker, New York, pp. 651-765.
  • [47] Simpson, K.L., 1985. Chemical changes in natural food pigments. In: Chemical changes in food during processing, Edited by T. Richardson, JW. Finley, New York, pp. 409-443.
  • [48] Baysal, T., Demirdöven, A., 2007. Lipoxygenase in fruits and vegetables: A review. Enzyme and Microbial Technology 40(4): 491-496.
  • [49] Cemeroğlu, B., Karadeniz, F., Özkan, M., 2003. Meyve ve Sebze İşleme Teknolojisi. Gıda Teknolojisi Derneği Yayınları, Ankara, Türkiye.
  • [50] Barrett, D.M., Theerakulkait, C., 1995. Quality indicators in blanched, frozen, stored vegetables. Food Technology 49(62): 64-65.
  • [51] Barrett, D.M., Garcia, E.L., Russell, G.F., Ramirez, E., Shirazi, A., 2000. Blanch time and cultivar effects on quality of frozen and stored corn broccoli. Journal of Food Science 65(3): 534-540.
  • [52] Cabibel, M., Nicolas, J., 1990. Lipoxygenase from tomato fruit (Lycopersicon esculentum L.). Partial purification, some properties and in vitro cooxidation of some carotenoid pigments. Sciences des Aliments 11(2): 277-290.
  • [53] Calligaris, S., Falcone, P., Anese, M., 2002. Color changes of tomato purees during storage at freezing temperatures. Journal of Food Science 67(6): 2432-2435.
  • [54] Rodrigo, D., Jolie, R., Van Loey, A., Hendrickx, M., 2007. Thermal and high pressure stability of tomato lipoxygenase and hydroperoxide lyase. Journal of Food Engineering 79: 423-429.
  • [55] Anese, M., Sovrano, S., 2006. Kinetics of thermal inactivation of tomato lipoxygenase. Food Chemistry 95: 131-137.
  • [56] Martens, M., Scheerlinck, N., De Belie, N., De Baerdemaeker, J.. 2001. Numerical model for the combined simulation of heat transfer and enzyme inactivation kinetics in cylindrical vegetables. Journal of Food Engineering 47: 185-193.
  • [57] Williams, D.C., Lim, M.H., Chen, A.O., Pangborn, R.M., Whitaker, J.R., 1986. Blanching of vegetables for freezing - which indicator enzyme to choose. Food Technology 40(6): 130-140.
  • [58] Verlent, I., Smout, C., Duvetter, T., Hendrickx, M.E., Van Loey, A., 2005. Effect of temperature and pressure on the activity of purified tomato polygalacturonase in presence of pectins with different patterns of methyl esterification. Innovative Food Science and Emerging Technologies 6: 293- 303.
  • [59] Bonnin, E., Le Goff, A., Korner, R., Vigouroux, J., Roepstorff, P., Thibault, J.F., 2002. Hydrolysis of pectins with different degrees and patterns of methylation by the endopolygalacturonase of Fusarium moniliforme. Biochimica et Biophysica Acta 1596: 83-94.
  • [60] Thibault, J.F., Mercier, C., 1979. Aspergillus niger endopolygalacturonase. 2. Characterization and some properties. Journal of Food Biochemistry 2: 379-393.
  • [61] Vercet, A., Sanchez, C., Burgos, J., Montanes, L., Lopez Buesa, P., 2002. The effects of manothermosonication on tomato pectic enzymes and tomato paste rheological properties. Journal of Food Engineering 53: 273-278.
  • [62] Wu, J., Gamage, T.V., Vilkhu, K.S., Simons, L.K., Mawson, R., 2008. Effect of thermosonication on quality improvement of tomato juice. Innovative Food Science and Emerging Technologies 9: 186- 195.
  • [63] Houben, K., Jamsazzadeh Kermani, Z., Van Buggenhout, S., Jolie, R., Van Loey, A., Hendrickx, M., 2013. Thermal and high-pressure stability of pectinmethylesterase, polygalacturonase, ?- galactosidase and ?-arabinofuranosidase in a tomato matrix: Towards the creation of specific endogenous enzyme populations through processing. Food and Bioprocess Technology 6(12): 3368-3380.
  • [64] Rodrigo, D., Cortes, C., Clynen, E., Schoofs, L., Van Loey, A., Hendrickx, M., 2006. Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties. Food Research International 39: 440-448.
  • [65] Fachin, D., Van Loey, A., Nguyen, B.L., Verlent, I., Indrawati, I., Hendrickx, M.E., 2003. Inactivation kinetics of polygalacturonase in tomato juice. Innovative Food Science and Emerging Technologies 4: 135-142.
  • [66] Peeters, L., Fachin, D., Smout, C., Van Loey, A., Hendrickx, M.E., 2004. Influence of ?-subunit on thermal and high-pressure process stability of tomato polygalacturonase. Biotechnology and Bioengineering 86(5): 543-549.
  • [67] Lopez, P., Sanchez, A.C., Vercet, A., Burgos, J., 1997. Thermal resistance of tomato polygalacturonase and pectinmethylesterase at physiological pH. Zeitschrift fur Lebensmitteluntersuchung undforschung. Food Research and Technology 204: 146 -150.
  • [68] Knegt, E., Vermeer, E., Bruinsma, J., 1988. Conversion of the polygalacturonase isoenzymes from ripening tomato fruits. Physiologia Plantarum 72: 108 -114.
  • [69] Braddock, R.J., 1999. Single strength orange juices and concentrate. In: Handbook of citrus by-products and processing technology, Wiley, New York, pp. 53-83.
  • [70] Rouseff, R.L., Leahy, M.M., 1995. Fruit flavors. In: Biogenesis, characterization, and authentication, American Chemical Society, Washington D.C, pp. 164-81.
  • [71] Evrendilek, G.A., Jin, Z.T., Ruhlman, K.T., Qiu, X., Zhang, Q.H., Richter, E.R., 2000. Microbial safety and shelf life of apple juice and cider processed by bench and pilot scale PEF systems. Innovative Food Science and Emerging Technologies 1(1): 77-86.
  • [72] Yeom, H.W., Streaker, C.B., Zhang, Q.H., Min, D.B., 2000. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. Journal of Agricultural and Food Chemistry 48(10): 4597-4605.
  • [73] Jin, Z.T., Zhang, Q.H., 1999. Pulsed electric field inactivation of microorganisms and preservation of quality of cranberry juice. Journal of Food Procesing and Preservation 23: 481-497.
  • [74] Qiu, X., Sharma, S., Tuhela, L., Jia, M., Zhang, Q.H., 1998. An integrated PEF pilot plant for continuous nonthermal pasteurization of fresh orange juice. Transactions of the American Society of Agricultural Engineers 41(4): 1069-1074.
  • [75] Espachs-Barroso, A., Van Loey, A., Hendrickx, M., Martín-Belloso, O., 2006. Inactivation of plant pectin methylesterase by thermal or high intensity pulsed electric field treatments. Innovative Food Science and Emerging Technologies 7(1-2): 40-48.
  • [76] Min, S., Zhang, Q.H., 2003. Effects of commercialscale pulsed electric field processing on flavor and color of tomato juice. Journal of Food Science 68(5): 1600-1606.
  • [77] Tangwongchai, R., Ledward, D.A., Ames, J.A., 2000. Effect of high-pressure treatment on texture of cherry tomato. Journal of Agricultural and Food Chemistry 48: 1434-1441.
  • [78] Krebbers, B., Matser, A.M., Hoogerwerf, S.W., Moezelaar, R., Tomassen, M.M.M., Van den Berg, R.W., 2003. Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innovative Food Science and Emerging Technologies 4: 377-385.
  • [79] Ogawa, H., Fukuhisa, K., Kubo, Y., Fukumoto, H., 1990. Pressure inactivation of yeast, molds and pectinesterase in Satsuma mandarin juice: Effect of juice concentration, pH and organic acids and comparison with heat sanitation. Agricultural and Biological Chemistry 54(5): 1219-1225.
  • [80] Hsu, K-C., 2008. Evaluation of processing qualities of tomato juice induced by thermal and pressure processing. Food Science and Technology 41: 450-459.
  • [81] Crelier, S., Robert, M.C., Claude, J., Juillerat, M.A., 2001. Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat- and pressure-induced inactivation. Journal of Agricultural and Food Chemistry 49: 5566-5575.
  • [82] Bermejo-Prada, A., Van Buggenhout, S., Otero, L., Houben, K., Van Loey, A., Hendrickx, M.E., 2014.
  • Kinetics of thermal and high-pressure inactivation of avocado polygalacturonase. Innovative Food Science and Emerging Technologies doi: 10.1016/j.ifset.2014.05.005.
  • [83] Fachin, D., Van Loey, A., Indrawati, L., Ludikhuyze, L., Hendricx., 2002. Thermal and high-pressure inactivation of tomato polygalacturonase: a kinetic study. Journal of Food Science 67: 1610-1615.
  • [84] Fernandez Garcia, A., Butz, P., Tauscher, B., 2001. Effects of high-pressure processing on carotenoid extractability, antioxidant activity, glucose idffusion, and water binding of tomato puree (Lycopersicon esculentum Mill.). Journal of Food Science 66: 1033-1038.
  • [85] Mason, T.J., 1990. Introduction. In: Chemistry with ultrasound, Edited by, T.J. Mason, Elsevier Applied Science, New York, pp. 1-26.
  • [86] Raviyan, P., Zhang, Z., Feng, H., 2005. Ultrasonication for tomato pectin methylesterase inactivation: Effect of cavitation intensity and temperature on inactivation. Journal of Food Engineering 70: 189-196.
  • [87] Bal, E., Çelik, S., 2008. Hasat sonrası UV-C uygulamalarının giant erik çeşidinin meyve kalitesi ve soğukta muhafazası üzerine etkileri. Tarım Bilimleri Dergisi 14(2): 101-107.
  • [88] Ben-Yehoshua, S., Mercier, J., 2005. UV irradiation, biological agents, and natural compounds for controlling postharvest decay in fresh fruits and vegetables. In: S. Ben-Yehoshua, Environmentally Friendly Technologies for Agricultural Produce Quality. CRC Taylor & Francis, Boca Roton, FL, pp. 265-299.
  • [89] Bu, J., Yu, Y., Aisikaer, G., Ying, T., 2013. Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biology and Technology 86: 337-345.
  • [90] Phan, T.D., Bo, W., West, G., Lycett, G.W., Tucker, G.A., 2007. Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiology 144: 1960-1967.
  • [91] Barka, E.A., Kalantari, S., Makhlouf, J., Arul, J., 2000. Impact of UV-C irradiation on the cell walldegrading enzymes during ripening of tomato (Solanum lycopersicum L.) fruit. Journal of Agricultural and Food Chemistry 48: 667-671.