Saf Titanyum İmplantın Asit ve Alkali İşlemler ile Yüzey Modifikasyonu

Mevcut çalışmada, ticari saf titanyum numuneler biyouyumluluk açısından önem arz eden yüzey pürüzlülüğünün sıvı temas açısı üzerine etkisini incelemek için değişik asit ve alkali çözeltilerine maruz bırakılmıştır. Bu amaçla, titanyum yüzeyi 6 farklı asit ve alkali çözeltileri ile uzun süreli dağlanmıştır. Yüzeyler mekanik profilometre,  sıvı temas açısı ölçüm cihazı ve taramalı elektron mikroskobu (SEM) ile incelenmiştir. Çalışma sonucunda, titanyum implant yüzeyindeki pürüzlülük değerinin artışı ile sıvı temas açısının arttığı görülmüştür. Orijinal numune ile mukayese edildiğinde,    1K, 2K ve 3K kodlu numunelerde yüzey pürüzlülüğü ve sıvı temas açısı düşmüş, 4K, 5K ve 6K kodlu numunelerde ise artma eğilimi göstermiştir. Bu durum ilk 3 kimyasal işlemin titanyum yüzeyinde hidrofilik bir özellik oluşturduğunun göstergesidir.

Surface Modification of Pure Titanium Implant Using Acid and Alkali Treatments

In the present study, commercial pure titanium (Cp‐Ti) samples were subjected to various acid and alkali solutions to study the role of surface roughness, which is important in terms of biocompatibility, on liquid contact angle of implant surfaces. For this purpose, the surfaces of titanium samples were etched by mixtures of acid and alkali for long duration. The surfaces of treated samples were characterized using mechanical profilometer, optical tensiometer for measurement liquid contact angle and scanning electron microscopy. In the results, it was observed that the contact angle of titanium implant increased with the increase in the surface roughness values on titanium surfaces. The surface roughness and liquid contact angle values of the samples with 1K, 2K and 3K codes decreased, whereas they increased for the samples with 4K, 5K and 6K codes when compared to the original titanium. This case indicated that the first three chemical treatments created hydrophilic property on titanium surfaces.

___

  • Bagno, A., Bello, C., 2004. Surface treatments and roughness properties of Ti based biomaterials. Journal of Materials Science: Materials in Medicine, 15, 935‐949.
  • Bauer, S., Schmuki, P., von der Mark, K., Park, J., 2013. Engineering biocompatible implant surface: Part I: Materials and surfaces. Progress in Materials Science, 58, 261‐326.
  • Dearnley, P.A., 2005. A brief review of test methodologies for surface‐engineered biomedical implant alloys. Surface and Coatings Technology, 198 (1‐3), 483‐490.
  • Deligianni, D.D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J. and Missirlis, Y.F.,2001. Effect of surface roughness of the titanium alloy Ti6Al4V on human bone marrow cell response and on protein adsorption.Biomaterials,22 (11), 1241‐1251.
  • Esposito, M., Hirsch, J., Lekholm, U. and Thomsen, P., 1999. Differential diagnosis and treatment strategies for biologic complications and failing oral implants: a review of the literatüre.International Journal of Oral & Maxillofacial Implants, 14, 473‐490.
  • García‐Alonso, M.C., Saldaña, L., Vallés, G., González‐ Carrasco, J.L., González‐Cabrero, J., Martínez, M.E., Gil‐Garaye, E. and Munuerae, L.,2003. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials,24 (1), 19‐26.
  • Geetha, M., Singh, A.K., Asokamani, R. and Gogia, A.K., 2009. Ti based biomaterials, the ultimate choice for orthopaedic implants‐A review, Progress in Materials Science, 54, 397‐425.
  • Gil, F.J., Padros, A., Manero, J.M., Aparicio, C., Nilsson, M. and Planell, J.A., 2002. Growth of bioactive surfaces on titanium and its alloys for orthopedic and dental implants. Materials Science and Engineering C,22, 53‐60.
  • Grigorescu, S., Pruna, V., Titorencu, I., Jinga, V.V., Mazare, A., Schmuki, P., Demetrescu, I., 2014. The two step nanotube formation on TiZr scaffolds for cell growth. Bioelectrochemistry. 98, 39‐45.
  • Guleryuz, H. and Cimenoğlu, H., 2004. Effect of thermal oxidation on corrosion and corrosion‐wear behaviour of a Ti‐6Al‐4V alloy. Biomaterials, 25 (16), 3325‐3333.
  • Hallab, N.J., Bundy, K.J., O'Connor, K., Moses, R.L. and Jacobs, J.J., 2001. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion, Tissue Engineering, 2001, 7(1), 55‐71.
  • Hanawa, T., Asami, K., Asaoka, K., 1998. Repassivation of titanium and surface oxide film regenerated in simulated bioliquid.Journal of Biomedical Materials Research, 40(4), 530‐538.
  • Havıtcıoğlu, H., 2011.  İmplant malzemelerinin yüzey özelliklerinin iyileştirilmesi.TOTBİD Dergisi, 10(2), 178‐183.
  • Huang, H.H., Ho, C.T., Lee, T.H., Lee, T.L., Liao, K.K. and Chen, F.L., 2004. Effect of surface roughness of ground titanium on initial cell adhesion, Biomolecular Engineering. 21 (3‐5), 93‐97.
  • Jonn, B.P. and Young, K.K., 2000. Metalic Biomaterials. BiomedicalEngineering Handbook, Unit:37.
  • Juodzbalys,G.,Sapragoniene,M. and Wennerrberg, A., 2003. NewAcidEtched Titanium Dental Implant Surface. Stomatologija, Baltic Dental and Maxillofacial Journal, 5, 101‐105.
  • Klokkevold, P.R., Nishimura, R.D., Adachi, M. and Caputo, A., 1997. Osseointegration enhanced by chemical etching of titanium surface: atorque removal study in the rabbit. Clinical Oral Implants Research, 8(6), 442‐447.
  • Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. and Yamamuro, T., 1990. Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ ceramic A‐W.Journal of Biomedical Materials Research,24(6), 721‐734.
  • Komotori, J., Lee, B.J., Dong, H. and Dearnley, P.A., 2001. Corrosion response of surface engineered titanium alloys damaged by prior abrasion. Wear, 251 (1‐12), 1239‐1249.
  • Kulkarni, M., Mazare, A., Schmuki, P., Iglič, A., 2015. Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 5, 111‐136.
  • Larsson, C., Thomsen, P., Lausmaa, J., Rodahl, M., Kasemo, B. and Ericson, L.E., 1994. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials,15, 1062‐ 1074.
  • Liu, X., Chub, P.K. and Ding, C., 2004. Surface modification of titanium, titanium alloys, and related materials for biomedical applications.Materials Science and Engineering: R: Reports,47 (3‐4), 49‐121.
  • Miwa, M.,    Nakajima, A.,    Fujishima, A.,Hashimoto, K. and Watanabe, T., 2000. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir, 16 (13), 5754‐ 5760.
  • Moruna, C., Espanol, M., Montufar, E., Mestres, G., Aparicio, C., Javier, G.F., Ginebra, M., 2013. Biomaterials Surface Science. Taubert, A., Mano, J.F., Rodriguez, Cabello, J.C. (eds.), Wiley‐VCH    Verlag, 337‐374.
  • Niinomi, M., 2003. Recent research and development in titanium alloys for biomedical applications and healthcare goods.Science and Technology of Advanced Materials. 4, 445‐454.
  • Nishiguchi, S., Fujibayashi, S., Kim, H.M., Kokubo, T. and Nakamura, T., 2003. Biology of alkali‐  and heat‐ treated titanium implants.Journal of Biomedical Materials Research Part A,  67A(1), 26‐35.
  • Nithyanandam, J.,    LalDas, S., Palanikumar, K., 2014. Surface Roughness Analysis in Turning of Titanium Alloy by Nanocoated Carbide Insert. Procedia Materials Science, 5, 2159‐2168.
  • Pan, J., Thierry, D. and Leygraf, C., 1996. Hydrogen peroxide toward enhanced oxide growth on titanium in PBS solution: Blue coloration and clinical relevance.Journal of Biomedical Materials Research, 30 (3), 393‐402.
  • Pilliar, R.M.,2003. Metals and Orthopaedic Implants‐Past Successes, Present Limitations, Future Challenges.Medical Device Materials, Procceedings of the Materials & Processes for Medical Device Conference, Ed. Shrivastava S., Anaheim C.A., 8‐22.
  • Ponsonnet, L., Reybier, K., Jaffrezic, N., Comte, V., Lagneau, C., Lissac, M. and Martelet, C., 2003.
  • Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behavior.Materials Science and Engineering C, 23(4), 551–560.
  • Qi, Y.M., Ma, B.H., Geng, Y.J., Deng, J.Y., Cui, C.X., 2014. Nanosurface modification of biomedical  β  titanium alloy for dental implant and its antibacterial property. Advanced Materials Research, 904, 142‐ 145.
  • Ross, A.P., Webster, T.J., 2013. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions. International Journal of Nanomedicine, 8, 109‐117.
  • Shah, A.K., Sinha, R.K., Hickok,N.J. and Tuan, R.S., 1999. High‐resolution morphometric analysis of human osteoblastic cell adehesion on clinically relevant orthopedic alloys.Bone,24 (5), 499‐506.
  • Wälivaara, B., Aronsson, B.O., Rodahl, M., Lausmaa, J. and Tengvall, P., 1994. Titanium with different oxides: in vitro studies of protein adsorption and contact activation.Biomaterials,15 (10), 827‐834.
  • Wenzel, R.N., 1936. Resistance of solid surfaces to wetting by water. Industrial and engineering chemistry, 28(8), 988‐994.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Cephe Hattından Önde Düzenlenen Tesislerin İmar Mevzuatı Açısından İncelenmesi

Ali ERGÜN

24‐Epibrassinolid Ön Uygulaması Yapılmış  Domates (Lycopersicon esculentum Mill.) Tohumlarının NaCl Stresi Koşullarında Çimlenmesi ve Fide Gelişimi

Emel GÖKDOĞAN YILMAZ, Betül BÜRÜN

Hamilton‐Jacobi Equations on an almost Kähler Model of a Cartan Space

Mehmet TEKKOYUN, Ahmet MOLLAOĞULLARI

Küf Gelişiminin Görüntü İşleme Teknikleri ile Analizi

Uğur FİDAN, Nurgül Özmen SÜZME

Düzce ve Çevresinde Gıda Olarak Tüketilen Yabani Bitkilerin Tüketim Biçimleri ve Besin Öğesi Değerleri

Ersin YÜCEL, Faik CEYLAN

Tarihi Yerleşim ve Arkeolojik Yapı Bilgi Sistemi : Denizli İli Örneği

Ömer GÜLEÇ, Erdal AKYOL, Sezai TOKAT, Bilal SÖĞÜT, Mutlu ALKAN

Estimating Solubility of Parathion in Organic Solvents

İlker POLATOĞLU, Yılmaz YÜREKLİ, Suat Bahar BAŞTÜRK

Mn Katkısının LiCoO2 Katot Aktif Maddesinin Yapısı ve Morfolojisine Olan Etkileri

Merve TEKİN, Burak ASLAN, Emre ATEŞ, Mustafa GÖZÜAÇIK, Tuğçe KARABACAK, Aydın KÖKNAR, Gürsel ÖRS, Abdullah Kamil ÖZSOY, Sümeyye ÜNLÜ, Can Fırat YAMACI, Sevda AVCI, Deran TURAN, Uğur VURAL

Farklı Koşullarda Depolanan Agria veBettina Patates Çeşitlerinde Meydana Gelen Duyusal Değişimler

Cemal KASNAK, Recep PALAMUTOĞLU, Nevzat ARTIK

Karayolu Kenarlarındaki Tarım Arazilerindeki Topraklarda Ekstrakte Edilebilir Kobalt (Co) İçerikleri

Sevinç ADİLOĞLU, M.Turgut SAĞLAM