Mn Katkısının LiCoO2 Katot Aktif Maddesinin Yapısı ve Morfolojisine Olan Etkileri

Güncel hayatımızda, cep telefonları ve diz üstü bilgisayarlar gibi taşınabilir elektronik cihazların sayısının hızla artması ile yüksek enerji yoğunluklu, hafif, kompakt ve  şarj edilebilir pillerle ilgili araştırmalar yoğunlaşmıştır. Bu makalede Li‐iyon pillerinde en çok kullanılan katot malzemesi olan LiCoO2de Co yerine Mn katkılaması yapılarak, bu katkılamanın kristal yapı ve morfolojik özellikleri nasıl etkilediği incelenmiştir. LiCo1‐xMnxO2 bileşikleri x=0.1 aralığında katıhal reaksiyonları ile üretilmiş  ve örneklerin yapısal ve morfolojik özellikleri XRD ve SEM teknikleri ile araştırılmıştır. Bu çalışmalar sonucunda 0≤x≤0.2 örneklerinde LiCoO2 fazı kararlı faz durumunda iken, Mn miktarının artması ile Li2MnO3ve LiMn2O4 spinel fazı ortaya çıkmıştır.  

Effects of Mn Substitution on the structure and morphology of LiCoO2 Cathode Active Material

With the rapid increase in the number of mobile phones and portable electronic devices in our daily life, researchers have focused on high energy density, light weight and compact rechargeable batteries. In this report, effects of Mn substitution on structural and morphological properties of LiCoO2 which is one of the well‐known cathode materials for Li‐ion batteries were investigated. LiCo1‐xMnxO2 compounds with x=0.1 intervals were synthesized via solid state reactions technique. Structural and morphological properties of the samples are investigated via XRD and SEM. Based on our studies; we found that in 0≤x≤0.2 samples, LiCoO2 phase is the stable phase. As the Mn content increases, other phases such as Li2MnO3 and spinel LiMn2O4emerge.  

___

  • Whittingham M. S., 2004. Li batteries and cathode materials, Chem. Rev. 104, 4271‐4301.
  • Ellis, B. L., Lee, K. T., Nazar, L. F., (2010). Positive electrode materials for Li‐ion and Li‐batteries, Chemistry of Materials, 22, 691‐714.
  • Mizushima, K., Jones, P., Wiseman, P. J., Goodenough, J. B., 1980.   LixCoO2 (0_____x_____‐1): A new cathode material for of high energy density, Materials Research Bulletin, 15, 783‐789.
  • Mizushima, K., Jones, P., Wiseman, P. J., Goodenough, J. B., 1980.   LixCoO2 (0_____x_____‐1): A new cathode material for of high energy density, Materials Research Bulletin, 15, 783‐789.
  • Delmas, C., Saadoune, I., (1992). Electrochemical and physical properties of the LixNi1−yCoyO2 phases, Solid State Ionics 53, 370‐375, 1992.  
  • Gummow, J., Thackeray, M. M., (1993). Characterization of LT‐LixCo1‐yNiyO Electrodes for Rechargeable Lithium Cells, Journal of Electrochemical Society, 140, 3365‐3368.  
  • Arai, H., Okada, S., Sakurai, Y., Yamaki, J., (1997). Electrochemical and Thermal Behavior of LiNi1‐zMO2       (M = Co, Mn, Ti), J. Electrochem. Soc. 144, 3117‐3125.   
  • Ohzuku T. (1997). Innovative insertion material of LiAl1/4Ni3/4O2 (R‐m ) for lithium‐ionbatteries,J. Power Sources68, 131‐134.
  • Jang Y., Huang, B., Wang, H., Sadoway, D. R., Ceder, G.,(1999). LiAlyCo1‐yO2 (R‐3m) Intercalation Cathode for RechargeableLithium Batteries, J. Electrochem. Soc. 146, 862‐868.
  • Maugera, A., Zhangb, X., Groultb, H.,   Julienc, C. M., (2011). LiCo1‐yByO2 as Cathode Materials for Rechargeable Lithium Batteries, ECS Transactions, 35, 141‐148.
  • Yanase, I., Ohtaki, T., Watanabe, M., 2002. Application of combinatorial process to LiCo1‐xMnxO2 (0≤x≤0.2) powder synthesis, Solid State Ionics,151, 189‐196.
  • Suresh, P., Rodrigues, S., Shukla, A. K., Vasan, H. N., Munichandraiah, N., 2005. Synthesis of LiCo1‐xMnxO2 from a low temperature route and characterization as a cathode materials in Li‐ion cells, Solid State Ionics, 176, 281‐290.
  • Kim, S. K., Yang, D. H., Sohn, J. S., Jung, Y. C., 2012. Resynthesis of LiCo1‐xMnxO2 as a cathode material for lithium secondary batteries, Met. Mater. Int.,2, 321‐ 326.
  • Waki, S., Dokko, K., Itoh, T., Nishizawa, M., Abe, T., Uchida, I., 2000. High‐speed voltammetry of Mn‐ doped LiCoO2 using microelectrode technique, J. Solid State Electrochem, 4, 205‐209.
  • Stoyanova, R., Zhecheva, E., Zarkova, L., (1994). Effect of Mn‐substitution for Co on the crystal structure and acid delithiation of LiMnyCo1‐yO2 solid solutions, Solid State Ionics, 73, 233‐240.
  • Larson, A. C., Von Dreele, R. B., 2004. General Structural Analysis System, Los Alamos National Laboratory Report, 86‐748.
  • Tobby, H. B., (2001). EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr., 34, 210‐213.
  • Orman, H. J., Wiseman, P. J., 1984. Cobalt (III) Lithium oxide, CoLiO2: Structure refinement by powder neutron diffraction, Acta. Cryst., C40, 12‐14.
  • Park, S. H., Sato, Y., Kim, J. K., Lee, Y. S., 2007. Powder property and electrochemical characterization of Li2MnO3 material, Materials Chem. And Phys.,102, 225‐230.
  • Taracson, J. M., Guyomard, D., (1991). Li metal free rechagable batteries based on Li1+xMn2O4 cathodes (0≤x≤1) and carbon anodes. J. Electrochem. Soc., 138, 2864‐2868.
  • Goodenough, J., Kim, Y., 2010. Challenges for rechargable Li batteries, Chem. Mater., 22, 587‐603.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ