Karbon Fiber Kompozit Sandviç Levhaların Yanal Mukavemet Davranışlarının Araştırılması

Bu çalışmada, çekirdek yapısı ve yüzey kapakları karbon fiber kompozit malzemeden oluşan sandviçlevhaların imalatı gerçekleştirilmiştir. Sandviç levhaların çekirdek yapıları kare kesitli olup üretim,herhangi bir yapıştırıcı malzeme kullanılmadan yapılmıştır. Üretimi tamamlanan numunelerin yanalyüzeylerine, üniversal çekme-basma test cihazı yardımıyla basma testi uygulanarak kuvvet-yerdeğiştirme değerleri kaydedilmiştir. Farklı çekirdek yüksekliğine ve yoğunluğuna sahip olan numunelerinyanal basma dayanımları hesaplanmış ve hasar davranışları incelenmiştir. Sayısal çalışmada yanal kritikburkulma yükleri ANSYS programında hesaplanarak sonuçlar deneysel verilerle karşılaştırılmıştır.

Investigation of Edgewise Strength Behavior of Carbon Fiber Composite Sandwich Plates

In this study, manufacturing of sandwich plates which are made of entirely carbon fiber composite reinforced epoxy resin material was carried out. Core structure of sandwich plates are square cross- section and core structure was fabricated without any adhesively materials. The force-displacement values were saved by applying an edgewise compression test with the help of universal tensile test machine. Then, edgewise compressive strengths of specimens having different cores height and density were calculated and presented as graphical. In the numerical study, edgewise critical buckling loads were calculated in the ANSYS program and the results were compared with experimental data.

___

  • Abbadi, A., Tixier, C., Gilgert, J. and Azari Z., 2014. Experimental study on the fatigue behavior of honeycomb sandwich panels with artificial defects. Composite Structures, 120, 394–405.
  • ANSYS 13.0, (Academic Teaching Introductory) Command References and Gui.
  • Bhuiyan, M., Hosur, M. and Jeelani, S., 2009. Low- velocity impact response of sandwich composites with nanophased foam core and biaxial (±45°) braided face sheets. Composites Part B: Engineering, 40(6), 561–571.
  • Fiedler, T. and Ochsner, A., 2008. Experimental analysis of the flexural properties of sandwich panels with cellular core materials. Material Wissenschaft und Werkstofftechnik, 39(2), 121– 124.
  • Hou, Y., Neville, R., Scarpa, F., Remillat, C., Gu, B. and Ruzzene M., 2014. Graded conventional-auxetic kirigami sandwich structures: flatwise compression and edgewise loading. Composites: Part B, 59, 33–42.
  • Joosten, M.W., Dutton, S., Kelly, D. and Thomson, R.,2010. Experimental evaluation of the crush energy absorption of triggered composite sandwich panels under quasi-static edgewise compressive loading. Composites: Part A, 41, 1099–1106.
  • Kıyak., B. Karbon fiber kompozit çekirdekli sandviç levhaların imalatı ve mekanik özelliklerinin araştırılması, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği ABD, Yüksek Lisans Tezi, 2017.
  • Lei, H., Yao, K., Wen, W., Zhou H. and Fang D., 2016. Experimental and numerical investigation on the crushing behavior of sandwich composite under edgewise compression loading. Composites: Part B, 94, 34–44.
  • Othman, A.R. and Barton, D.C., 2008. Failure initiation and propagation characteristics of honeycomb sandwich composites. Composite Structures, 85(2), 126–138.
  • Russell, B. P., Deshpande, V.S. and Wadley, H.N.G., 2008. Quasistatic deformation and failure modes of composite square honeycombs. Journal of Mechanics of Materials and Structures, 3(7), 1315–1340.
  • Xiong, J., Ma, L., Stocchi, A., Yang, J., Wu, L. and Pan S., 2013. Bending response of carbon fiber composite sandwich beams with three dimensional honeycomb cores. Composite Structures, 108(1), 234–242.
  • Xu, G., Yang, F., Zeng, T., Cheng, S. and Wang, Z.,2015. Bending behavior of graded corrugated truss core composite sandwich beams. Composite Structures, 138, 342–351.
  • Yang, J., Xiong, J., Ma, L., Wang, B., Zhang, G. and Wu L.,2013. Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers. Composite Structures, 106, 570–580.